Impact of Dependencies Between Input Variables in Structural Reliability Problems Under Incomplete Probability Information

Nazih Benoumechiara 1 2

Gérard Biau ¹ Bertrand Michel ³ Philippe Saint-Pierre ⁴ Roman Sueur ² Nicolas Bousquet ² Bertrand looss ²

> ¹Laboratoire de Statistique Théorique et Appliquée (LSTA), Université Pierre-et-Marie-Curie, Paris.

²Département Management des Risques Industriels (MRI), EDF R&D, Chatou.

> ³Ecole Centrale de Nantes (ECN), Nantes.

⁴Institut de Mathématique de Toulouse (IMT), Université Paul Sabatier, Toulouse.

Wednesday, November 23th 2016

Contents

1 Illustration: Flood Example

- 2 General Framework
- 3 Methodology
- ④ Discussion

Contents

1 Illustration: Flood Example

• The Model

Overflow Probability Estimation

2 General Framework

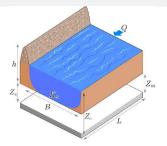
3 Methodology

4 Discussion

The Flood Model^[6]

$$S = Z_v + H + H_d - C_b$$

with $H = \left(rac{Q}{BK_s\sqrt{rac{Z_m-Z_v}{L}}}
ight)$



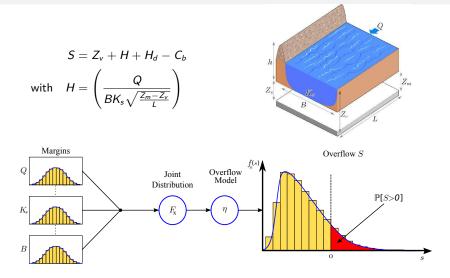
Input	Description	Probability Distribution	
Q	Maximal annual flowrate	Truncated Gumbel $\mathcal{G}(1013, 558)$ on [500, 3000]	
K₅	Strickler coefficient	Truncated normal $\mathcal{N}(30,8)$ on $[15,+\infty]$	
Z_v	River downstream level	Triangular $\mathcal{T}(49, 50, 51)$	
Z_m	River upstream level	Triangular $\mathcal{T}(54, 55, 56)$	
H_d	Dyke height	Uniform $\mathcal{U}[7,9]$	
C_b	Bank level	Triangular $\mathcal{T}(55, 55.5, 56)$	
L	Length of the river stretch	Triangular $T(4990, 5000, 5010)$	
В	River width	Triangular $\mathcal{T}(295, 300, 305)$	

[6] Bertrand looss and Paul Lemaître. "A review on global sensitivity analysis methods". In: Uncertainty Management in Simulation-Optimization of Complex Systems. Springer, 2015, pp. 101–122.

Nazih Benoumechiara (LSTA – MRI)

Rencontres Mexico-MascotNum

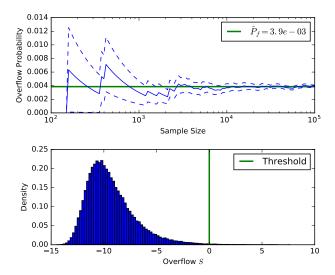
The Flood Model^[6]



[6] Bertrand looss and Paul Lemaître. "A review on global sensitivity analysis methods". In: Uncertainty Management in Simulation-Optimization of Complex Systems. Springer, 2015, pp. 101–122.

Monte-Carlo Estimation with the Independence Assumption

Estimation of $P_f = \mathbb{P}[S > 0]$.

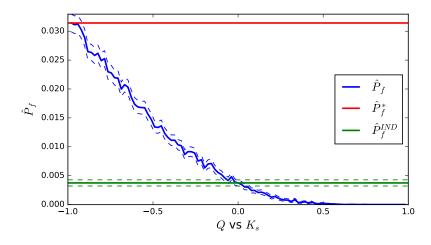


Monte-Carlo Estimation with One Pair of Correlated Variables

We suppose that Q and K_s are correlated. How can this correlation impact \hat{P}_f ?

Monte-Carlo Estimation with One Pair of Correlated Variables

We suppose that Q and K_s are correlated. How can this correlation impact \hat{P}_f ?



Contents

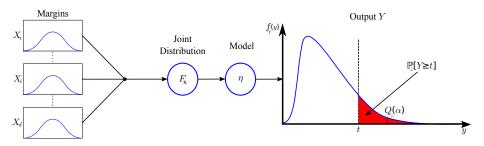
1 Illustration: Flood Example

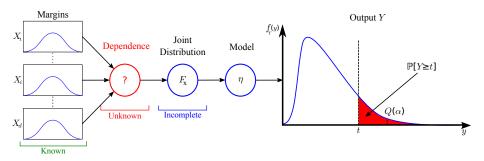
2 General Framework

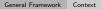
- Context
- The Worst Case Scenario
- Extremum-estimation

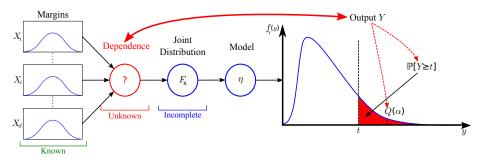
3 Methodology

4 Discussion



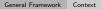


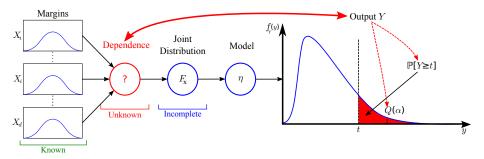




Questions:

- What is the relationship between the dependence structure and the output Y?
- Is it conservative to suppose independence ?



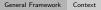


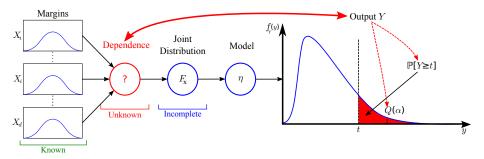
Questions:

- What is the relationship between the dependence structure and the output Y?
- Is it conservative to suppose independence ?

Objectives:

- Inform about the importance of the dependence structure.
- Bound the quantity of interest: e.g. $\mathbb{P}_{\perp}[Y \ge t] \le \mathbb{P}^*[Y \le t]$.
- Quantify the influence of the dependence for each pair of variables.





Questions:

- What is the relationship between the dependence structure and the output Y?
- Is it conservative to suppose independence ?

Objectives:

- Inform about the importance of the dependence structure.
- Bound the quantity of interest: e.g. $\mathbb{P}_{\perp}[Y \ge t] \le \mathbb{P}^*[Y \le t]$.
- Quantify the influence of the dependence for each pair of variables.

How to describe the dependence structure?

Copulas

Knowing the word "copula" as a grammatical term for a word or expression that links a subject and predicate, I felt that this would make an appropriate name for a function that links a multidimensional distribution to its one-dimensional margins
 Sklar, 1996

The dependence structure is described by a parametric copula C_{θ} with $\theta \in \Theta \subseteq \mathbb{R}^{p}$ such as^[9,10]

$$F_{\mathbf{X}}(\mathbf{x}) = C_{\theta}(F_{X_1}(x_1), \ldots, F_{X_d}(x_d)).$$

Family	$C_{\theta}(u,v)$	Θ	Kendall's $ au$
Independent	uv	/	/
Gaussian	$\Phi_{ heta}(\Phi^{-1}(u),\Phi^{-1}(v))$	[-1, 1]	$\frac{2 \arcsin \theta}{\pi}$
Clayton	$(u^{- heta}+v^{- heta}-1)^{-1/ heta}$	$[0,\infty)$	$\frac{\theta}{2+\theta}$
Gumbel	$\exp\left\{-[(-\ln u)^{\theta}+(-\ln v)^{\theta}]^{1/\theta}\right\}$	$[1,\infty)$	$1-rac{1}{ heta}$

[9] Roger B Nelsen. An introduction to copulas. Springer Science & Business Media, 2007.
 [10] M Sklar. Fonctions de répartition à n dimensions et leurs marges. Institut de Statistique de l'Université de Paris, 1959.

Nazih Benoumechiara (LSTA - MRI)

"

Copulas

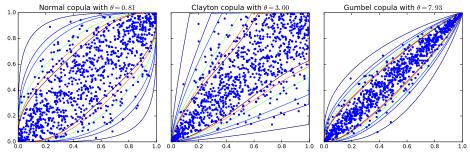


Figure: Example of copula densities with $\tau = 0.6$.

Copulas

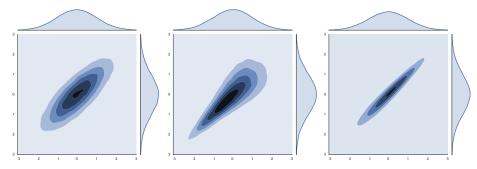
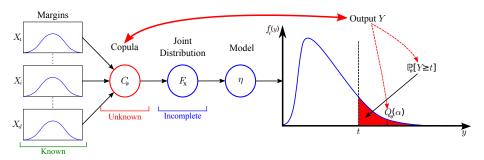
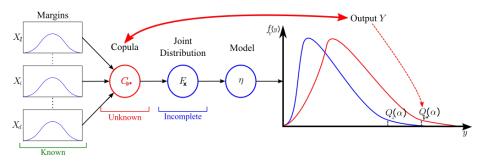


Figure: Example of joints p.d.f with Gaussian margins and $\tau = 0.6$.

General Framework The Worst Case Scenario



General Framework The Worst Case Scenario



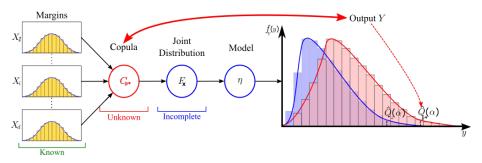
For a given $\alpha \in (0, 1)$ and a copula C_{θ} ,

$$\theta^* = \operatorname*{argmax}_{\theta \in \Theta} Q_{\theta}(\alpha).$$

This worst case gives an upper bound such that

 $Q_{\theta^*}(\alpha) \ge Q_{\perp}(\alpha).$

General Framework The Worst Case Scenario



For a given $\alpha \in (0,1)$ and a copula C_{θ} ,

$$oldsymbol{ heta}^* = rgmax_{oldsymbol{ heta}} Q_{oldsymbol{ heta}}(lpha). \ oldsymbol{ heta} \in oldsymbol{\Theta}$$

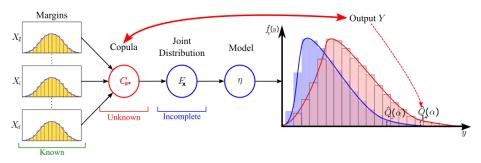
This worst case gives an upper bound such that

$$Q_{\theta^*}(\alpha) \geq Q_{\perp}(\alpha).$$

Using the estimated quantile:

$$\hat{oldsymbol{ heta}}_n = rgmax_{oldsymbol{ heta}} \hat{oldsymbol{Q}}_{n,oldsymbol{ heta}}(lpha) \ oldsymbol{ heta} \in \Theta$$

General Framework The Worst Case Scenario



For a given $\alpha \in (0, 1)$ and a copula C_{θ} ,

$$oldsymbol{ heta}^* = rgmax_{oldsymbol{ heta}} Q_{oldsymbol{ heta}}(lpha). \ oldsymbol{ heta} \in oldsymbol{\Theta}$$

This worst case gives an upper bound such that

$$Q_{\theta^*}(\alpha) \geq Q_{\perp}(\alpha).$$

Using the estimated quantile:

$$\hat{ heta}_n = rgmax \, \hat{Q}_{n, oldsymbol{ heta}}(lpha) \ oldsymbol{ heta} \in \Theta$$

In practice, θ is discretized using a thin grid Θ_K of cardinality K:

$$\hat{ heta}_{n,K} = rgmax_{ heta \in \Theta_K} \hat{Q}_{n, heta}(lpha).$$

The maximisation of a data-dependent function is an *extremum-estimator*^[2,5]:

$$\hat{oldsymbol{ heta}}_n = rgmax_{oldsymbol{ heta}} \hat{oldsymbol{Q}}_{n,oldsymbol{ heta}}(lpha).$$

Theorem 1 (Consistency of $\hat{\theta}_n$)

If there is a function $Q_{ heta}(lpha)$, for any $lpha \in (0,1)$ such that

- $Q_{\theta}(\alpha)$ is uniquely minimised at θ^* ,
- Θ is compact,
- $Q_{\theta}(\alpha)$ is continuous in θ ,
- $\sup_{\theta \in \Theta} |\hat{Q}_{n,\theta}(\alpha) Q_{\theta}(\alpha)| \xrightarrow{P} 0,$

then $\hat{\theta}_n \xrightarrow{P} \theta^*$.

^{2]} Takeshi Amemiya. Advanced econometrics. Harvard university press, 1985.

Fumio Hayashi. "Econometrics". In: (2000).

The maximisation of a data-dependent function is an *extremum-estimator*^[2,5]:

$$\hat{oldsymbol{ heta}}_n = rgmax_{oldsymbol{ heta}} \hat{oldsymbol{Q}}_{n,oldsymbol{ heta}}(lpha).$$

Theorem 1 (Consistency of $\hat{\theta}_n$)

If there is a function $Q_{\theta}(\alpha)$, for any $\alpha \in (0,1)$ such that

- $Q_{\theta}(\alpha)$ is uniquely minimised at θ^* , (\rightarrow Assumed)
- Θ is compact, (\rightarrow OK using a concordance measure, i.e. Kendall's τ)
- $Q_{\theta}(\alpha)$ is continuous in θ , (\rightarrow OK under regularity assumptions of η and F_{X})
- $\sup_{\theta \in \Theta} |\hat{Q}_{n,\theta}(\alpha) Q_{\theta}(\alpha)| \xrightarrow{P} 0$, $(\to OK, \text{ thanks to the DKW inequality})$

then $\hat{\theta}_n \xrightarrow{P} \theta^*$.

^{2]} Takeshi Amemiya. Advanced econometrics. Harvard university press, 1985.

^{5]} Fumio Hayashi. "Econometrics". In: (2000).

Contents

1) Illustration: Flood Example

2 General Framework

③ Methodology

- Gaussian Assumption
- Two-dimensional Copulas
- Multivariate Copulas Using Vine Copulas
- Iterative Construction of Dependence Structure

Discussion

Multivariate Gaussian Copula

The problem can be treated assuming a Gaussian copula with correlation matrix $\mathbf{R} \in [-1, 1]^{d \times d}$. Example for d = 3:

$$\mathbf{R} = \begin{pmatrix} 1 & \theta_{12} & \theta_{13} \\ \theta_{12} & 1 & \theta_{23} \\ \theta_{13} & \theta_{23} & 1 \end{pmatrix}.$$

Objective: Determine the correlation matrix maximising the quantile.

^[3] Paul Embrechts, Alexander McNeil, and Daniel Straumann. "Correlation and dependence in risk management: properties and pitfalls". In: *Risk management: value at risk and beyond* (2002), pp. 176–223.

Multivariate Gaussian Copula

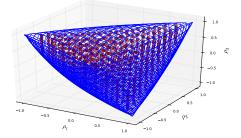
The problem can be treated assuming a Gaussian copula with correlation matrix $\mathbf{R} \in [-1, 1]^{d \times d}$. Example for d = 3:

$$\mathbf{R} = egin{pmatrix} 1 & heta_{12} & heta_{13} \ heta_{12} & 1 & heta_{23} \ heta_{13} & heta_{23} & 1 \end{pmatrix} \, ,$$

Objective: Determine the correlation matrix maximising the quantile.

Problems:

• The correlation matrix **R** should be definite semi-positive.



Multivariate Gaussian Copula

The problem can be treated assuming a Gaussian copula with correlation matrix $\mathbf{R} \in [-1, 1]^{d \times d}$. Example for d = 3:

$$\mathbf{R} = egin{pmatrix} 1 & heta_{12} & heta_{13} \ heta_{12} & 1 & heta_{23} \ heta_{13} & heta_{23} & 1 \end{pmatrix} \, ,$$

Objective: Determine the correlation matrix maximising the quantile.

Problems:

- The correlation matrix **R** should be definite semi-positive.
- The Gaussian assumption is not always adapted.
 - *G* fallacies raised from the naive assumption that dependence properties of the elliptical world also hold in the non-elliptical world^[3]
- The Gaussian copula does not have tail dependence: less penalizing.

"

^[3] Paul Embrechts, Alexander McNeil, and Daniel Straumann. "Correlation and dependence in risk management: properties and pitfalls". In: *Risk management: value at risk and beyond* (2002), pp. 176–223.

Two-Dimensional Problems

Several studies were made to study the influence of correlations^[4] and using copulas^[11,12].

^[4] Mircea Grigoriu and Carl Turkstra. "Safety of structural systems with correlated resistances". In: Applied Mathematical Modelling 3.2 (1979), pp. 130–136.

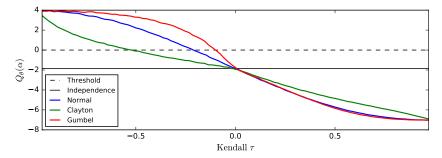
^[11] Xiao-Song Tang et al. "Impact of copulas for modeling bivariate distributions on system reliability". In: *Structural safety* 44 (2013), pp. 80–90.

^[12] Christoph Werner et al. "Expert judgement for dependence in probabilistic modelling: a systematic literature review and future research directions". In: *European Journal of Operational Research* (2016).

Two-Dimensional Problems

Several studies were made to study the influence of correlations^[4] and using copulas^[11,12].

On the Flood Example with Q and K_s at $\alpha = 99\%$:



[4] Mircea Grigoriu and Carl Turkstra. "Safety of structural systems with correlated resistances". In: Applied Mathematical Modelling 3.2 (1979), pp. 130–136.

[11] Xiao-Song Tang et al. "Impact of copulas for modeling bivariate distributions on system reliability". In: Structural safety 44 (2013), pp. 80–90.

[12] Christoph Werner et al. "Expert judgement for dependence in probabilistic modelling: a systematic literature review and future research directions". In: *European Journal of Operational Research* (2016).

Two-Dimensional Problems

The worst case is not always at the edge. For example, we consider:

•
$$X_1 \sim \mathcal{N}(0,1)$$
 and $X_2 \sim \mathcal{N}(-2,1)$
• $\eta(x_1, x_2) = x_1^2 x_2^2 - 0.3 x_1 x_2$

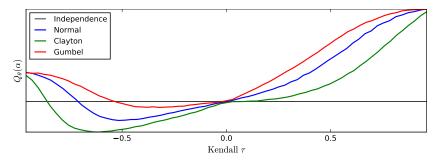


Figure: Variation of the output quantile for different copula families and $\alpha = 5\%$.

Copula Densities

Using Sklar's Theorem, a bivariate distribution of X_1 and X_2 can be written using a copula C_{12} , such that^[8]

 $\mathbf{F}(x_1, x_2) = C_{12}(F_1(x_1), F_2(x_2)).$

If F_1 and F_2 are continuous, C is unique and admits a density

$$c_{12}(u_1, u_2) = \frac{\partial^2 C_{12}(u_1, u_2)}{\partial u_1 u_2}.$$

Which implies

• joint density:

$$f(x_1, x_2) = c_{12}(F_1(x_1), F_2(x_2)) \cdot f_1(x_2) \cdot f_2(x_2)$$

• conditional density:

$$f(x_1|x_2) = c_{12}(F_1(x_1), F_2(x_2)) \cdot f_2(x_2)$$

[8] Nicole Krämer and Ulf Schepsmeier. "Introduction to vine copulas". In: ().

The joint density $f(x_1, \ldots, x_d)$ can be represented by a product of pair-copula densities and marginal densities^[7].

^[7] Harry Joe. "Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence parameters". In: Lecture Notes-Monograph Series (1996), pp. 120–141.

The joint density $f(x_1, \ldots, x_d)$ can be represented by a product of pair-copula densities and marginal densities^[7].

For example in d = 3. One possible decomposition of $f(x_1, x_2, x_3)$ is:

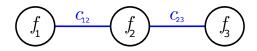
 $f(x_1, x_2, x_3) = f_1(x_1)f_2(x_2)f_3(x_3)$ (margins)

^[7] Harry Joe. "Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence parameters". In: Lecture Notes-Monograph Series (1996), pp. 120–141.

The joint density $f(x_1, \ldots, x_d)$ can be represented by a product of pair-copula densities and marginal densities^[7].

For example in d = 3. One possible decomposition of $f(x_1, x_2, x_3)$ is:

$$\begin{split} f(x_1, x_2, x_3) &= f_1(x_1) f_2(x_2) f_3(x_3) (\text{margins}) \\ &\times c_{12}(F_1(x_1), F_2(x_2)) \cdot c_{23}(F_2(x_2), F_3(x_3)) (\text{unconditional pairs}) \end{split}$$

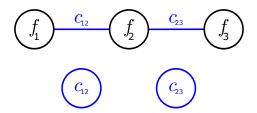


^[7] Harry Joe. "Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence parameters". In: Lecture Notes-Monograph Series (1996), pp. 120–141.

The joint density $f(x_1, \ldots, x_d)$ can be represented by a product of pair-copula densities and marginal densities^[7].

For example in d = 3. One possible decomposition of $f(x_1, x_2, x_3)$ is:

$$\begin{split} f(x_1, x_2, x_3) &= f_1(x_1) f_2(x_2) f_3(x_3) (\text{margins}) \\ &\times c_{12} (F_1(x_1), F_2(x_2)) \cdot c_{23} (F_2(x_2), F_3(x_3)) (\text{unconditional pairs}) \end{split}$$

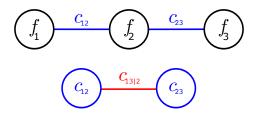


^[7] Harry Joe. "Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence parameters". In: Lecture Notes-Monograph Series (1996), pp. 120–141.

The joint density $f(x_1, \ldots, x_d)$ can be represented by a product of pair-copula densities and marginal densities^[7].

For example in d = 3. One possible decomposition of $f(x_1, x_2, x_3)$ is:

$$\begin{split} f(x_1, x_2, x_3) &= f_1(x_1) f_2(x_2) f_3(x_3) (\text{margins}) \\ &\times c_{12}(F_1(x_1), F_2(x_2)) \cdot c_{23}(F_2(x_2), F_3(x_3)) (\text{unconditional pairs}) \\ &\times c_{13|2}(F_{1|2}(x_1|x_2), F_{3|2}(x_3|x_2)) (\text{conditional pair}) \end{split}$$



^[7] Harry Joe. "Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence parameters". In: Lecture Notes-Monograph Series (1996), pp. 120–141.

Vine Copulas

Advantages of using Vines:

- Multidimensional dependence structure using bivariate copulas from various families.
- Graphical model: set of connected trees.

Vine Copulas

Advantages of using Vines:

- Multidimensional dependence structure using bivariate copulas from various families.
- Graphical model: set of connected trees.

Problem: There is very large number of possible Vine decompositions : $\binom{d}{2} \times (n-2)! \times 2^{\binom{d-2}{2}}$.

For example, when d = 6, there are 23.040 possible R-Vines.

Iterative Vine Construction

Key point: Not all pairs are equivalently influential on $Q_{\theta}(\alpha)$.

Iterative Vine Construction

Key point: Not all pairs are equivalently influential on $Q_{\theta}(\alpha)$.

Idea: Iteratively add a pair in the maximisation of $Q_{\theta}(\alpha)$.

Init: $\Theta^c = \emptyset$ **1:** For each pair $X_i - X_j$:

$$\hat{\theta}_{ij}^* = \operatorname*{argmax}_{\theta_{ij} \in \Theta_{ij} \cup \Theta^c} \hat{Q}_{n,\theta_{i,j}}(\alpha),$$

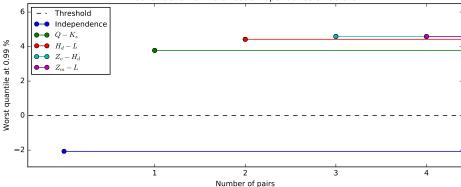
2: Add the pair X_i - X_j that maximises the most $Q_{\theta}(\alpha)$ in Θ^c . And adapt the R-Vine structure.

3: Loop over **2** and **3.** Stop when there is no evolution of $Q_{\theta^*}(\alpha)$ or when the budget is consumed.

Iterative Vine Construction

Key point: Not all pairs are equivalently influential on $Q_{\theta}(\alpha)$.

Idea: Iteratively add a pair in the maximisation of $Q_{\theta}(\alpha)$.



Construction of Worst Case Dependence Structure

Contents

1) Illustration: Flood Example

2 General Framework

3 Methodology

Conclusion

- Dependencies can have an significant impact on the model output Y.
- $\circ\,$ The worst case scenario θ^* gives an idea of the influence of dependencies.
- Using Vine Copulas we can determine a penalized dependence structure.
- $\,\circ\,$ Structured methodology with a discretized $\Theta,$ parametric copula families and Vines.

Conclusion

- Dependencies can have an significant impact on the model output Y.
- $\circ\,$ The worst case scenario θ^* gives an idea of the influence of dependencies.
- Using Vine Copulas we can determine a penalized dependence structure.
- $\,\circ\,$ Structured methodology with a discretized $\Theta,$ parametric copula families and Vines.

Perspectives

- $\circ\,$ Aggregate expert feedback to restrict the set Θ to more realistic dependence structures.
- Apply a more greedy algorithm using Quantile Regression Forests.

Thank You!

Contents

5 Additional Content• Impact of Dependence

How to measure the impact of potential dependencies?

Definition 1 (Price of Correlation,^[1])

[a] Shipra Agrawal et al. "Price of correlations in stochastic optimization". In: *Operations Research* 60.1 (2012), pp. 150–162.

Given a decision $z \in Z$, a collection of joint densities X and a cost function h,

 $\eta(\mathbf{z}) = \sup_{\mathbf{X} \in \mathcal{X}} \mathbb{E}_{\mathbf{X}}[h(\mathbf{X}, \mathbf{z})].$

Let $z_{I} = \operatorname{argmin}_{z \in \mathbb{Z}} \mathbb{E}_{X_{I}}[h(X_{I}, z)]$, $z_{R} = \operatorname{argmin}_{z \in \mathbb{Z}} \eta(z)$. Then Price of Correlation (POC) is defined as:

$$POC = \frac{\eta(\mathbf{z}_I)}{\eta(\mathbf{z}_R)}$$

The application is different, but a common question remains: how much risk it involves to ignore the correlations?

To estimate the influence of a pair of variables $X_i - X_i$ on $Q_{\theta}(\alpha)$, we define the quantity

$$\mathscr{I}_{ij} = rac{|Q_{ heta_{ij}^*}(\alpha) - Q_{\perp}(\alpha)|}{|Q_{ heta}^*(\alpha) - Q_{\perp}(\alpha)|},$$

where θ_{ij}^* is the solution of the max(min)imisation of $Q_{\theta}(\alpha)$ when only the pair $X_i - X_j$ is correlated and the others are considered independent.

To estimate the influence of a pair of variables $X_i - X_j$ on $Q_{\theta}(\alpha)$, we define the quantity

$$\mathscr{I}_{ij} = rac{|Q_{ heta_{ij}^*}(\alpha) - Q_{\perp}(\alpha)|}{|Q_{ heta}^*(\alpha) - Q_{\perp}(\alpha)|},$$

where θ_{ij}^* is the solution of the max(min)imisation of $Q_{\theta}(\alpha)$ when only the pair X_{i} - X_{j} is correlated and the others are considered independent.

