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Illustration: Flood Example The Model

The Flood Model[6]

S = Zv + H + Hd − Cb

with H =

(
Q

BKs
√

Zm−Zv
L

)

Input Description Probability Distribution

Q Maximal annual flowrate Truncated Gumbel G(1013, 558) on [500, 3000]
Ks Strickler coefficient Truncated normal N (30, 8) on [15, +∞]
Zv River downstream level Triangular T (49, 50, 51)
Zm River upstream level Triangular T (54, 55, 56)
Hd Dyke height Uniform U [7, 9]
Cb Bank level Triangular T (55, 55.5, 56)
L Length of the river stretch Triangular T (4990, 5000, 5010)
B River width Triangular T (295, 300, 305)

[6] Bertrand Iooss and Paul Lemaître. “A review on global sensitivity analysis methods”. In: Uncertainty
Management in Simulation-Optimization of Complex Systems. Springer, 2015, pp. 101–122.
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Illustration: Flood Example Overflow Probability Estimation

Monte-Carlo Estimation with the Independence Assumption

Estimation of Pf = P[S > 0].
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Illustration: Flood Example Overflow Probability Estimation

Monte-Carlo Estimation with One Pair of Correlated Variables

We suppose that Q and Ks are correlated. How can this correlation impact P̂f ?
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General Framework Context

Q(α)
⟂

ℙ[Y≥t] ⟂

t

Output  Y

y

f
Y
( )y

X1

Xi

Xd

η

Model
Joint 

Distribution

FX

Margins

Questions:
What is the relationship between the dependence structure and the output Y ?
Is it conservative to suppose independence ?

Objectives:
Inform about the importance of the dependence structure.
Bound the quantity of interest: e.g. P⊥[Y ≥ t] ≤ P∗[Y ≤ t].
Quantify the influence of the dependence for each pair of variables.

How to describe the dependence structure?
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General Framework Context

Copulas

“
Knowing the word “copula“ as a grammatical term for a word or expression that links
a subject and predicate, I felt that this would make an appropriate name for a function
that links a multidimensional distribution to its one-dimensional margins

Sklar, 1996 ”
The dependence structure is described by a parametric copula Cθ with θ ∈ Θ ⊆ Rp such
as[9,10]

FX(x) = Cθ(FX1(x1), . . . ,FXd (xd)).

Family Cθ(u, v) Θ Kendall’s τ

Independent uv / /
Gaussian Φθ(Φ−1(u),Φ−1(v)) [−1, 1] 2 arcsin θ

π

Clayton (u−θ + v−θ − 1)−1/θ [0,∞) θ
2+θ

Gumbel exp
{
−[(− ln u)θ + (− ln v)θ]1/θ

}
[1,∞) 1− 1

θ

[9] Roger B Nelsen. An introduction to copulas. Springer Science & Business Media, 2007.
[10] M Sklar. Fonctions de répartition à n dimensions et leurs marges. Institut de Statistique de l’Université
de Paris, 1959.
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General Framework Context

Copulas
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Figure: Example of copula densities with τ = 0.6.
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General Framework Context

Copulas
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Figure: Example of joints p.d.f with Gaussian margins and τ = 0.6.
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General Framework The Worst Case Scenario

Cθ
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IncompleteUnknown
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For a given α ∈ (0, 1) and a copula Cθ ,
θ∗ = argmax

θ∈Θ
Qθ(α).

This worst case gives an upper bound such that
Qθ∗ (α) ≥ Q⊥(α).

Using the estimated quantile:
θ̂n = argmax

θ∈Θ
Q̂n,θ(α).

In practice, θ is discretized using a thin grid ΘK of cardinality K :

θ̂n,K = argmax
θ∈ΘK

Q̂n,θ(α).
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General Framework Extremum-estimation

The maximisation of a data-dependent function is an extremum-estimator [2,5]:

θ̂n = argmax
θ∈Θ

Q̂n,θ(α).

Theorem 1 (Consistency of θ̂n )
If there is a function Qθ(α), for any α ∈ (0, 1) such that

Qθ(α) is uniquely minimised at θ∗,

(→ Assumed)

Θ is compact,

(→ OK using a concordance measure, i.e. Kendall’s τ)

Qθ(α) is continuous in θ,

(→ OK under regularity assumptions of η and FX)

sup
θ∈Θ
|Q̂n,θ(α)− Qθ(α)| P−→ 0,

(→ OK, thanks to the DKW inequality)

then θ̂n
P−→ θ∗.

[2] Takeshi Amemiya. Advanced econometrics. Harvard university press, 1985.
[5] Fumio Hayashi. “Econometrics”. In: (2000).
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Methodology Gaussian Assumption

Multivariate Gaussian Copula

The problem can be treated assuming a Gaussian copula with correlation matrix R ∈ [−1, 1]d×d .
Example for d = 3:

R =

(
1 θ12 θ13
θ12 1 θ23
θ13 θ23 1

)
.

Objective: Determine the correlation matrix maximising the quantile.

Problems:
The correlation matrix R should be definite semi-positive.

The Gaussian assumption is not always adapted.

“
fallacies raised from the naive assumption that dependence properties of the
elliptical world also hold in the non-elliptical world[3] ”The Gaussian copula does not have tail dependence: less penalizing.

[3] Paul Embrechts, Alexander McNeil, and Daniel Straumann. “Correlation and dependence in risk manage-
ment: properties and pitfalls”. In: Risk management: value at risk and beyond (2002), pp. 176–223.
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Methodology Two-dimensional Copulas

Two-Dimensional Problems

Several studies were made to study the influence of correlations[4] and using copulas[11,12].

On the Flood Example with Q and Ks at α = 99%:

0.5 0.0 0.5

Kendall τ

8

6

4

2

0

2

4

Q
θ
(α

)

Threshold

Independence

Normal

Clayton

Gumbel

[4] Mircea Grigoriu and Carl Turkstra. “Safety of structural systems with correlated resistances”. In: Applied
Mathematical Modelling 3.2 (1979), pp. 130–136.
[11] Xiao-Song Tang et al. “Impact of copulas for modeling bivariate distributions on system reliability”. In:
Structural safety 44 (2013), pp. 80–90.
[12] Christoph Werner et al. “Expert judgement for dependence in probabilistic modelling: a systematic literature
review and future research directions”. In: European Journal of Operational Research (2016).
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Methodology Two-dimensional Copulas

Two-Dimensional Problems

The worst case is not always at the edge.
For example, we consider:

X1 ∼ N (0, 1) and X2 ∼ N (−2, 1)
η(x1, x2) = x2

1 x2
2 − 0.3x1x2

0.5 0.0 0.5

Kendall τ

Q
θ
(α

)

Independence

Normal

Clayton

Gumbel

Figure: Variation of the output quantile for different copula families and α = 5%.
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Methodology Multivariate Copulas Using Vine Copulas

Copula Densities

Using Sklar’s Theorem, a bivariate distribution of X1 and X2 can be written using a
copula C12, such that[8]

F(x1, x2) = C12(F1(x1),F2(x2)).

If F1 and F2 are continuous, C is unique and admits a density

c12(u1, u2) = ∂2C12(u1, u2)
∂u1u2

.

Which implies
joint density:

f (x1, x2) = c12(F1(x1),F2(x2)) · f1(x2) · f2(x2)

conditional density:

f (x1|x2) = c12(F1(x1),F2(x2)) · f2(x2)

[8] Nicole Krämer and Ulf Schepsmeier. “Introduction to vine copulas”. In: ().
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Methodology Multivariate Copulas Using Vine Copulas

Pair-Copula Construction (R-Vines)

The joint density f (x1, . . . , xd) can be represented by a product of pair-copula densities
and marginal densities[7].

For example in d = 3. One possible decomposition of f (x1, x2, x3) is:

f (x1, x2, x3) = f1(x1)f2(x2)f3(x3)(margins)

× c12(F1(x1),F2(x2)) · c23(F2(x2),F3(x3))(unconditional pairs)
× c13|2(F1|2(x1|x2),F3|2(x3|x2))(conditional pair)

[7] Harry Joe. “Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence
parameters”. In: Lecture Notes-Monograph Series (1996), pp. 120–141.
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Methodology Multivariate Copulas Using Vine Copulas

Vine Copulas

Advantages of using Vines:
Multidimensional dependence structure using bivariate copulas from various families.
Graphical model: set of connected trees.

Problem: There is very large number of possible Vine decompositions :(d
2

)
× (n − 2)!× 2(d−2

2 ).
For example, when d = 6, there are 23.040 possible R-Vines.
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Methodology Iterative Construction of Dependence Structure

Iterative Vine Construction

Key point: Not all pairs are equivalently influential on Qθ(α).

Idea: Iteratively add a pair in the maximisation of Qθ(α).
Init: Θc = ∅
1: For each pair Xi -Xj :

θ̂∗ij = argmax
θij∈Θij∪Θc

Q̂n,θi,j (α),

2: Add the pair Xi -Xj that maximises the most Qθ(α) in Θc . And adapt the R-Vine
structure.
3: Loop over 2 and 3. Stop when there is no evolution of Qθ∗ (α) or when the budget is
consumed.
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Methodology Iterative Construction of Dependence Structure
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Discussion

Conclusion
Dependencies can have an significant impact on the model output Y .

The worst case scenario θ∗ gives an idea of the influence of dependencies.

Using Vine Copulas we can determine a penalized dependence structure.

Structured methodology with a discretized Θ, parametric copula families and Vines.

Perspectives
Aggregate expert feedback to restrict the set Θ to more realistic dependence
structures.

Apply a more greedy algorithm using Quantile Regression Forests.
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Discussion

Thank You!
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Additional Content Impact of Dependence

How to measure the impact of potential dependencies?

Definition 1 (Price of Correlation,[1])
[a] Shipra Agrawal et al. “Price of correlations in stochastic optimization”. In: Operations Research
60.1 (2012), pp. 150–162.

Given a decision z ∈ Z, a collection of joint densities X and a cost function h,

η(z) = sup
X∈X

EX[h(X, z)].

Let zI = argminz∈Z EXI [h(XI , z)], zR = argminz∈Z η(z). Then Price of Correlation
(POC) is defined as:

POC = η(zI)
η(zR)

The application is different, but a common question remains: how much risk it involves
to ignore the correlations?
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Additional Content Impact of Dependence

To estimate the influence of a pair of variables Xi -Xj on Qθ(α), we define the quantity

Iij =
|Qθ∗

ij
(α)− Q⊥(α)|

|Q∗θ (α)− Q⊥(α)| ,

where θ∗ij is the solution of the max(min)imisation of Qθ(α) when only the pair Xi -Xj is
correlated and the others are considered independent.
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