Adaptive numerical designs for the calibration of computer codes

Pierre Barbillon¹

Joint work with: Guillaume Damblin¹², Merlin Keller², Éric Parent¹,

Alberto Pasanisi²

AgroParisTech / INRA UMR MIA Paris, Université Paris-Saclay
² FDF R & D

Journées MEXICO-MASCOT NUM 22-23 novembre 2016

- Bayesian calibration
 - Two kinds of data
 - Bayesian Calibration
 - Meta-modeling / emulator of the computer code
 - Calibration with emulator
- 2 Sequential design for calibration
 - Expected Improvement Criterion
 - El for calibration
- 3 Numerical simulations
- 4 Conclusion

- Bayesian calibration
 - Two kinds of data
 - Bayesian Calibration
 - Meta-modeling / emulator of the computer code
 - Calibration with emulator
- 2 Sequential design for calibration
 - Expected Improvement Criterion
 - El for calibration
- 3 Numerical simulations
- 4 Conclusion

- Bayesian calibration
 - Two kinds of data
 - Bayesian Calibration
 - Meta-modeling / emulator of the computer code
 - Calibration with emulator
- 2 Sequential design for calibration
 - Expected Improvement Criterion
 - El for calibration
- 3 Numerical simulations
- 4 Conclusion

Field data

Field data provided by physical experiments:

$$\boldsymbol{y}^F = \boldsymbol{y}^F(\boldsymbol{x}_1), \dots, \boldsymbol{y}^F(\boldsymbol{x}_n),$$

- n is small, $\mathbf{x}_1, \dots \mathbf{x}_n \in \mathcal{X}$ hard to set, sometimes uncontrollable, included in a small domain...
- Model:

$$y^F(\mathbf{x}_i) = \zeta(\mathbf{x}_i) + \epsilon(\mathbf{x}_i),$$

where

- \bullet $\epsilon(\mathbf{x}_i)$ often assumed i.i.d. $\mathcal{N}(0, \sigma^2)$,
- σ^2 sometimes treated as known...

Computer model / simulator

Computer experiments:

Computer model (simulator) $(\mathbf{x}^*, \boldsymbol{\theta}) \mapsto f(\mathbf{x}^*, \boldsymbol{\theta}) \in \mathbb{R}^s$ where

- physical parameters: $\mathbf{x}^* \in \mathcal{X} \subset \mathbb{R}^m$ observable and often controllable inputs
 - x* same meaning as in field data,
 - \blacksquare extrapolation if $\mathbf{x}^* > \max(\mathbf{x}_i)$ or $\mathbf{x}^* < \min(\mathbf{x}_i)$.
- simulator parameters: $\theta \in \mathcal{T} \subset \mathbb{R}^d$ non-observable parameters, required to run the simulator.

2 types:

- "calibration parameters": physical meaning but unknown, necessary to make the code mimic the reality,
- "tuning parameters": no physical interpretation.

f designed to mimic the unknown physical process $\zeta(\cdot)$ for a value of θ .

The simulator is often an **expensive black-box function**.

 \Rightarrow limited number *M* of runs of the simulator.

Relationship between the simulator and the data

for i = 1, ..., n,

if the simulator sufficiently represents the physical system:

$$y_i^F = f(\mathbf{x}_i, \boldsymbol{\theta}^*) + \epsilon(\mathbf{x}_i),$$

i.e. for the unknown value $\theta = \theta^* : f(\mathbf{x}, \theta^*) = \zeta(\mathbf{x})$ for any $\mathbf{x} \in \mathcal{X}$,

if the field observations are inconsistent with the simulations (irreducible model discrepancy):

$$\mathbf{y}_i^F = f(\mathbf{x}_i, \boldsymbol{\theta}^*) + \delta(\mathbf{x}_i) + \epsilon(\mathbf{x}_i).$$

 $\delta(\cdot)$ models the difference between the simulator and the physical system:

$$\delta(\mathbf{x}) = \zeta(\mathbf{x}) - f(\mathbf{x}, \theta^*),$$

but

- What does θ^* mean ?
- A best fitting ?
- identifiability issues ?
- lacksquare usually assumed to be smoother than the real physical process $\zeta(\cdot)$

Ref.: Kennedy and O'Hagan (2001), Hidgon et al. (2005)...

- Bayesian calibration
 - Two kinds of data
 - Bayesian Calibration
 - Meta-modeling / emulator of the computer code
 - Calibration with emulator
- 2 Sequential design for calibration
 - Expected Improvement Criterion
 - El for calibration
- 3 Numerical simulations
- 4 Conclusion

A calibration example

Hypotheses:

■ The simulator represents sufficiently well the physical system:

$$y^F(\mathbf{x}_i) = f(\mathbf{x}_i, \boldsymbol{\theta}^*) + \epsilon_i, \quad i = 1, \dots, n.$$

- But unknown θ^* .
- lacksquare $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ i.i.d. with known σ^2 .

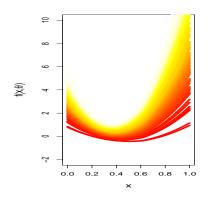
In the next example:

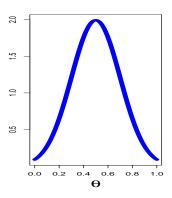
- $\sigma^2 = 0.3$
- n = 6
- $\theta^* = 0.6$

A calibration example

Prior:

prior distribution on unknown θ : $\pi(\cdot)$ from expert judgment, past experiments... Possible choice $\pi(\theta) = \mathcal{N}(\theta_0, \sigma_0^2) = \mathcal{N}(0.5, 0.04)$.





A calibration example

Data:

Couples $(\mathbf{x}_1, y_1^F), \dots, (\mathbf{x}_n, y_n^F)$ from physical experiments.

Posterior distribution:

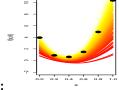
$$\pi(\boldsymbol{\theta}|\mathbf{y}^F) \propto l(\boldsymbol{\theta};\mathbf{y}^F) \cdot \pi(\boldsymbol{\theta})$$

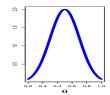
$$\propto \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y^F(\mathbf{x}_i) - f(\mathbf{x}_i,\boldsymbol{\theta}))^2 - \frac{1}{2\sigma_0^2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^2\right)$$

- Analytical posterior if $\theta \mapsto f(\mathbf{x}, \theta)$ is a linear map,
- Otherwise MH sampling to simulate according to the posterior distribution.

Two kinds of data Bayesian Calibration Meta-modeling / emulator of the computer code Calibration with emulator

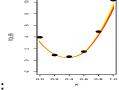
A calibration example

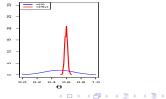




Prior with data:

$\Downarrow \text{Metropolis-Hastings algorithm} \Downarrow$





Posterior on θ :

More details on the MH algorithm

Initialisation:

 θ^0 chosen.

Update:

iterations $t = 1, \ldots,$

- 1 Proposal: $\tilde{\theta}^{t+1} = \theta^t + \mathcal{N}(0, \tau^2)$.
- Compute

$$\alpha(\theta^t, \tilde{\theta}^{t+1}) = \frac{\pi(\tilde{\theta}^{t+1}|\mathbf{y}^F)}{\pi(\theta^t|\mathbf{y}^F)}$$

Acceptation:

$$\theta^{t+1} = \left\{ \begin{array}{ll} \tilde{\theta}^{t+1} & \text{with probability } \alpha(\theta^t, \tilde{\theta}^{t+1}) \\ \theta^t & \text{otherwise.} \end{array} \right.$$

Note that the ratio $\alpha(\theta^t, \tilde{\theta}^{t+1})$ needs several computations of $f(\mathbf{x}, \theta)$ at each step since

$$\pi(\boldsymbol{\theta}|\boldsymbol{y}^F) \propto \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n(\boldsymbol{y}^F(\boldsymbol{x}_i) - f(\boldsymbol{x}_i,\boldsymbol{\theta}))^2 - \frac{1}{2\sigma_0^2}(\boldsymbol{\theta} - \boldsymbol{\theta}_0)^2\right)\,.$$

- Bayesian calibration
 - Two kinds of data
 - Bayesian Calibration
 - Meta-modeling / emulator of the computer code
 - Calibration with emulator
- 2 Sequential design for calibration
 - Expected Improvement Criterion
 - El for calibration
- 3 Numerical simulations
- 4 Conclusion

Expensive black-box computer code

- Run the simulator for a given (\mathbf{x}^*, θ) is time-consuming / expensive.
- The simulator is a black-box, no intrusive methods are possible.
- ⇒ Only few runs of the simulator are possible then we cannot apply algorithms (as in Bayesian calibration) which make a massive use of simulator runs.

Using an emulator / metamodel / coarse model / approximation of the simulator which is fast to compute, but:

- loss on precision of prediction,
- new uncertainty source: accuracy of the model approximation,
- taken into account.

Choosing a design of numerical experiments

Desing of experiments $\mathbf{D}_{\mathbf{M}}$: Choosing M couples

$$(\mathbf{x}_{j}^{*}, \boldsymbol{\theta}_{j})$$

- space filling for x,
- \blacksquare with respect to the prior distribution on θ ,
- $\mathbf{x}_{i}^{*}=\mathbf{x}_{i}$?

where the simulator is called.

Emulator using Gaussian Process:

- Very popular in computer experiments.
- integrated in a Bayesian framework: appears in the likelihood function and a prior on the parameters of the Gaussian process are chosen.
- model uncertainty coming from approximation of *f*.
- After the calibration step, used in prediction for a new point x.

Meta-modeling: prior distribution on f

Sacks et al. (1989).

Gaussian process prior F on function f: $\forall (\mathbf{x}^*, \theta) \in E$,

$$F(\mathbf{x}^*, \boldsymbol{\theta}) = \sum_{k=1}^{Q} \beta_k h_k(\mathbf{x}^*, \boldsymbol{\theta}) + Z(\mathbf{x}^*, \boldsymbol{\theta}) = H(\mathbf{x}^*, \boldsymbol{\theta})^T \boldsymbol{\beta} + Z(\mathbf{x}^*, \boldsymbol{\theta}),$$

where

- $h_1, ..., h_Q$ regression functions and β parameters vector,
- *Z* centered Gaussians process with covariance function:

$$Cov(Z(\mathbf{x}_1^*, \theta_1), Z(\mathbf{x}_2^*, \theta_2)) = \sigma^2 K((\mathbf{x}_1^*, \theta_1), (\mathbf{x}_2^*, \theta_2)),$$

where *K* is correlation kernel.

Hypotheses

- $K((\mathbf{x}_1^*, \theta_1), (\mathbf{x}_2^*, \theta_2)) = \sigma_K^2 \exp(-\xi_{\mathbf{x}^*} \sum |\mathbf{x}_1^* \mathbf{x}_2^*|^{\alpha} \xi_{\theta} \sum |\theta_1 \theta_2|^{\alpha})$
- parameters $\phi = (\beta, \sigma^2, K \text{ parameters})$ assumed fixed (in practice, maximum likelihood estimators);

Meta-modeling: posterior

- lacksquare $v_1 = f((\mathbf{x}^*, \boldsymbol{\theta})_1), \dots, v_M = f((\mathbf{x}^*, \boldsymbol{\theta})_M)$ evaluations of f on a design \mathbf{D}_M
- Process F^{D_M} : Conditioning F to $F((\mathbf{x}_1^*, \theta_1)) = v_1, \dots, F(\mathbf{x}_M^*, \theta_M)) = v_M$. Gaussian Process with mean $m(\mathbf{x}^*, \theta)$ and covariance $C((\mathbf{x}^*, \theta), (\mathbf{x}^*, \theta)') \ \forall (\mathbf{x}^*, \theta), (\mathbf{x}^*, \theta)'$.

For all
$$(\mathbf{x}^*, \boldsymbol{\theta}) \in E$$
,

- $\mathbf{m}(\mathbf{x}^*, \boldsymbol{\theta})$ approximates $f(\mathbf{x}^*, \boldsymbol{\theta})$,
- $C((\mathbf{x}^*, \theta), (\mathbf{x}^*, \theta))$ uncertainty on this approximation.

For all
$$(\mathbf{x}_i^*, \boldsymbol{\theta}_i) \in D_M$$
,

$$m(\mathbf{x}_i^*, \boldsymbol{\theta}_i) = f(\mathbf{x}_i^*, \boldsymbol{\theta}_i),$$

$$C((\mathbf{x}_i^*, \boldsymbol{\theta}_i), (\mathbf{x}_i^*, \boldsymbol{\theta}_i)) = 0.$$

Gaussian process emulator: illustration

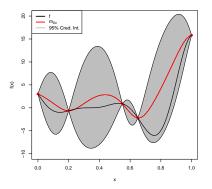


Figure: Posterior mean and pointwise credible interval

- Bayesian calibration
 - Two kinds of data
 - Bayesian Calibration
 - Meta-modeling / emulator of the computer code
 - Calibration with emulator
- 2 Sequential design for calibration
 - Expected Improvement Criterion
 - El for calibration
- 3 Numerical simulations
- 4 Conclusion

Likelihood with a Gaussian process hypothesis on f

$$\mathbf{z} = (\mathbf{y}_1^F, \dots, \mathbf{y}_n^F, f(\mathbf{x}_1^*, \theta_1), \dots, f(\mathbf{x}_M^*, \theta_M)) = (\mathbf{y}^F, f(\mathbf{D}_M))$$

■ likelihood on **z**

$$I(\boldsymbol{\theta}, \sigma^2, \phi; \mathbf{z}) \propto |\Sigma_{\mathbf{z}}|^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{z} - \boldsymbol{\mu})^T \Sigma_{\mathbf{z}}^{-1}(\mathbf{z} - \boldsymbol{\mu})\right)$$

where

 $\mu = (\mu(\mathbf{x}_1, \theta), \dots, \mu(\mathbf{x}_n, \theta), \mu(\mathbf{x}_1^*, \theta_1), \dots, \mu(\mathbf{x}_M^*, \theta_M))^T$ is the mean of the Gaussian process,

$$\Sigma_{\mathbf{z}} = \Sigma_f + \left(egin{array}{cc} \Sigma_y & 0 \ 0 & 0 \end{array}
ight)$$

with $\Sigma_y = \sigma^2 I_n$ and Σ_f is obtained as the covariance matrix corresponding to the points: $(\mathbf{x}_1, \theta), \dots, (\mathbf{x}_n, \theta), (\mathbf{x}_1^*, \theta_1), \dots, (\mathbf{x}_M^*, \theta_M)$.

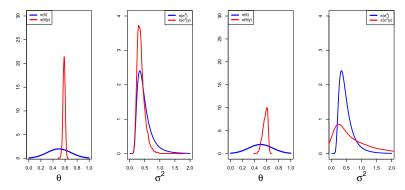
Dealing with GP parameters ϕ

- prior distribution on μ and covariance parameters Hidgon et al. (2005) ⇒ MCMC inference
- MLE estimators for \(\phi \) Kennedy and O'Hagan (2001)
 - plug-in approach,
 - only computer data $f(\mathbf{D}_M)$ are used (n < M) for MLE \Rightarrow Modularity approach Liu et al. (2009).
 - likelihood $I(\hat{\boldsymbol{\theta}}, \sigma^2; \mathbf{y}^F | f(\mathbf{D}_M))$:

$$I(\boldsymbol{\theta}, \sigma^2; \mathbf{y}^F | f(\mathbf{D}_M)) \propto |\tilde{\boldsymbol{\Sigma}}_{\mathbf{y}^F}|^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{y}^F - m(\mathbf{x}, \boldsymbol{\theta}))^T \tilde{\boldsymbol{\Sigma}}_{\mathbf{y}^F}^{-1}(\mathbf{y}^F - m(\mathbf{x}, \boldsymbol{\theta}))\right)$$

where

- $\mathbf{m}(\cdot)$ is the mean of the GP conditioned to simulator data,



unlimited runs versus M = 12

Posterior consistency

Proposition

Under the following assumptions:

- \blacksquare $\pi(\theta)$ has a bounded support \mathcal{T} ,
- the code output $f(\mathbf{x}, \theta)$ is uniformly bounded on $\mathcal{X} \times \mathcal{T}$,
- the correlation function (kernel) is a classical radial basis function
- f lies in the associated Reproducing Kernel Hilbert Space,
- the covering distances associated with the sequence of designs $(\mathbf{D}_M)_M$ tends to 0 with $M \to \infty$,

then, we have:

$$\lim_{M \to \infty} KL(\pi(\boldsymbol{\theta}|\boldsymbol{y}^F)||\pi^C(\boldsymbol{\theta}|\boldsymbol{y}^F, f(\boldsymbol{D}_M))) = 0.$$
 (1)

Motivation for adaptive designs in calibration

Example:

$$\theta = 12$$
,

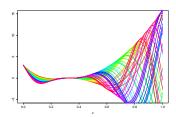
$$(x_1, x_2, x_3) = (0.1, 0.3, 0.8),$$

$$f(x,\theta) = (6 \cdot x - 2)^2 \cdot \sin(\theta \cdot x - 4) + \epsilon,$$

■
$$\epsilon_i \sim \mathcal{N}(0, 0.1^2)$$
 i.i.d.,

■ prior
$$\theta \sim \mathcal{U}[5, 15]$$
,

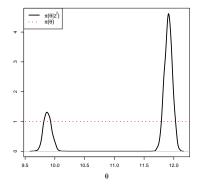
$$y_i = f(x_i, \theta) + \epsilon_i.$$



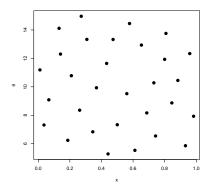
Motivation for adaptive designs in calibration

Quality of calibration (Bayesian or ML) is affected by choice in the numerical design.

Calibration with unlimited runs of f

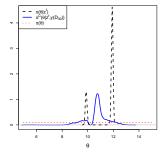


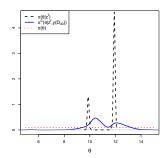
LHS maximin design



Motivation for adaptive designs in calibration

• Calibration with emulator built from a design with M = 30 calls to f





- Bayesian calibration
 - Two kinds of data
 - Bayesian Calibration
 - Meta-modeling / emulator of the computer code
 - Calibration with emulator
- 2 Sequential design for calibration
 - Expected Improvement Criterion
 - El for calibration
- 3 Numerical simulations
- 4 Conclusion

- Bayesian calibration
 - Two kinds of data
 - Bayesian Calibration
 - Meta-modeling / emulator of the computer code
 - Calibration with emulator
- 2 Sequential design for calibration
 - Expected Improvement Criterion
 - El for calibration
- 3 Numerical simulations
- 4 Conclusion

Efficient Global Optimization

- \blacksquare Goal: Find the global extremum (here minimum e.g.) of f,
- Expected improvement criterion proposed by Jones et al. (1998):

$$EI_n(\mathbf{x}) = \mathbb{E}((min_n - F(\mathbf{x}))^+ | F(D_n)),$$

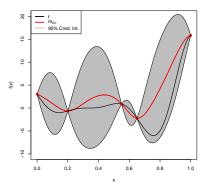
where min_n is the current minimum value:

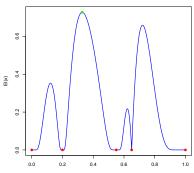
$$min_n = \min_{1,...,n} f(\mathbf{x}_i)$$

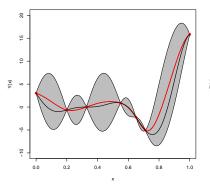
Closed-form computation:

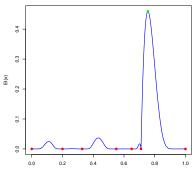
$$EI_{n}(\mathbf{x}) = (min_{n} - m_{D_{n}}(\mathbf{x}))\Phi\left(\frac{min_{n} - m_{D_{n}}(\mathbf{x})}{\sqrt{C_{D_{n}}(\mathbf{x}, \mathbf{x})}}\right) + \sqrt{C_{D_{n}}(\mathbf{x}, \mathbf{x})}\phi\left(\frac{min_{n} - m_{D_{n}}(\mathbf{x})}{\sqrt{C_{D_{n}}(\mathbf{x}, \mathbf{x})}}\right)$$

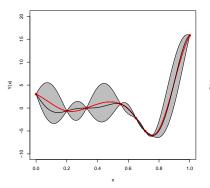
where Φ and ϕ are respectively the cdf and the pdf of $\mathcal{N}(0,1)$.

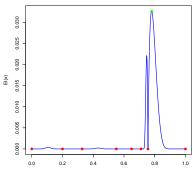


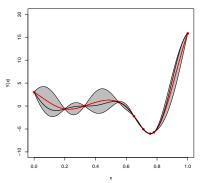


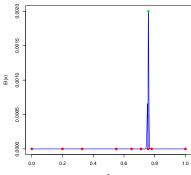




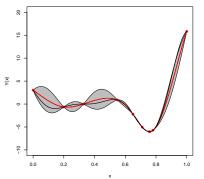


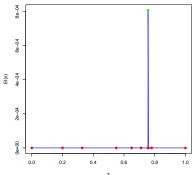






Example step 5





Outline

- Bayesian calibration
 - Two kinds of data
 - Bayesian Calibration
 - Meta-modeling / emulator of the computer code
 - Calibration with emulator
- 2 Sequential design for calibration
 - Expected Improvement Criterion
 - El for calibration
- 3 Numerical simulations
- 4 Conclusion

El for calibration

Optimization goal : maximize the likelihood ⇒ Expected Improvement for calibration.

Maximize the likelihood $I(\theta; \mathbf{z})$ over $\theta \Leftrightarrow \text{Minimize } SS(\theta) = \|\mathbf{y}^F - F(\mathbf{x}, \theta)\|^2$ over θ .

For given:

- field experiments $\mathbf{y}^F = y^F(\mathbf{x}_1), \dots, y^F(\mathbf{x}_n),$
- **D**_k numerical design on $\mathcal{X} \times \mathcal{T}$ with M points,
- \blacksquare m_k current minimal value of $SS(\theta)$.

El criterion:

$$El_{\mathbf{D}_{k}}(\theta) = \mathbb{E}_{\mathbf{D}_{k}}\left(\left(m_{k} - SS(\theta)\right)^{+}\right),$$

to be maximized.

El criterion is applied to a function of f.

El computation

$$\begin{aligned} EI_{\mathsf{D}_k}(\theta) &= \int_{B(0,\sqrt{m_k})} \left(m_k - SS(\theta) \right) dF_{D_M} \\ &= m_k \cdot \mathbb{P}_{D_M}(SS(\theta) \leq m_k) - \mathbb{E}_{D_M} \left(SS(\theta) \mathbb{I}_{SS(\theta) \leq m_k} \right) \end{aligned}$$

- no close form computation,
- $\mathbb{P}_{D_M}(SS(\theta) \leq m_k)$ is an upper bound and easier to compute,
- importance sampling may be used for the second term.

Algorithm

Initialization

- Build an initial numerical design $\mathbf{D}_0 \subset \mathcal{X} \times \mathcal{T}$ of size M_0 .
- Run the code over \mathbf{D}_0 , then construct an initial GPE based on $f(\mathbf{D}_0)$.
- Compute $\hat{\theta}_1$ as the posterior mean $\mathbb{E}[\theta|\mathbf{z}^f, f(\mathbf{D}_0)]$.
- $\blacksquare \mathbf{D}_1 = \mathbf{D}_0 \cup \{(\mathbf{x}_i^f, \hat{\boldsymbol{\theta}}_1)\}_{1 \leq i \leq n}.$
- Update the GPE distribution after running the code over $\{(\mathbf{x}_i^f, \hat{\boldsymbol{\theta}}_1)\}_{1 \leq i \leq n}$.
- Compute $m_1 := SS(\hat{\theta}_1)$.

From k = 1, repeat the following steps as long as $M_0 + n \times (k + 1) \le M$.

Step 1 Find an estimate $\hat{\theta}_{k+1}$ of $\theta_{k+1}^* = \underset{\theta}{\operatorname{argmax}} EI_{D_k}(\theta)$.

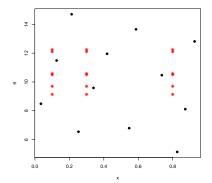
Step 2 $D_{k+1} = D_k \cup \{(\mathbf{x}_i^f, \hat{\theta}_{k+1})\}_{1 \leq i \leq n}$.

Step 3 Run the code over all new locations $\{(\mathbf{x}_i^f, \hat{\boldsymbol{\theta}}_{k+1})\}_{1 \leq i \leq n}$.

Step 4 Update the GPE distribution based on $f(\mathbf{D}_{k+1})$.

Step 5 Compute $m_{k+1} := \min\{m_1, \cdots, m_k, SS(\hat{\theta}_{k+1})\}_{1 \rightarrow 1}$

Adaptive design



Algorithm one at a time

Algorithm (step $k \longrightarrow \text{step } k + 1$):

$$\begin{aligned} & \boldsymbol{\theta}_{k+1} = \operatorname*{argmax} EI_k(\boldsymbol{\theta}), \\ & \mathbf{D}_{k+1} = \mathbf{D}_k^{} \cup (\mathbf{x}^{\star}, \boldsymbol{\theta}_{k+1}) \text{ where } \mathbf{x}^{\star} \in \mathbf{X}^f = \begin{bmatrix} \mathbf{x}_1^f, \cdots, \mathbf{x}_n^f \end{bmatrix}^T, \end{aligned}$$

$$\mathbf{I}(\mathbf{D}_{k+1}) = f(\mathbf{D}_k) \cup \{f(\mathbf{x}^*, \theta_{k+1})\},\$$

$$I(\mathbf{D}_{k+1}) = I(\mathbf{D}_k) \cup \{I(\mathbf{X}_{k+1})\},$$

$$\blacksquare F^{D_{k+1}} = F|f(\mathbf{D}_{k+1}),$$

$$m_{k+1} := \min \{ \mathbb{E}[SS_{k+1}(\theta_1)], \cdots, \mathbb{E}[SS_{k+1}(\theta_k)], \mathbb{E}[SS_{k+1}(\theta_{k+1})] \}.$$

Only 1 simulation to compute m_{k+1} !

Algorithm one at a time

Two criteria to choose \mathbf{x}_{k+1}^{\star} :

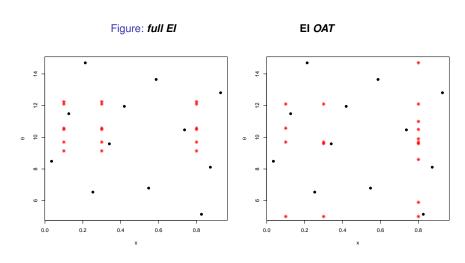
1.
$$\mathbf{x}^{\star} = \underset{\mathbf{x}_{i}^{f}}{\operatorname{argmax}} \operatorname{Var}(F^{\mathbf{D}_{k}}(\mathbf{x}_{i}^{f}, \boldsymbol{\theta}_{k+1})),$$

1.
$$\mathbf{x}^{\star} = \underset{\mathbf{x}_{i}^{f}}{\operatorname{argmax}} \operatorname{Var}(F^{\mathbf{D}_{k}}(\mathbf{x}_{i}^{f}, \boldsymbol{\theta}_{k+1})),$$
2.
$$\mathbf{x}^{\star} = \underset{\mathbf{x}_{i}^{f}}{\operatorname{argmax}} \left(\frac{\operatorname{Var}(F^{D_{k}}(\mathbf{x}_{i}^{f}, \boldsymbol{\theta}_{k+1}))}{\underset{i=1, \cdots, n}{\operatorname{max}} \operatorname{Var}(F^{D_{k}}(\mathbf{x}_{i}^{f}, \boldsymbol{\theta}_{k+1}))} \times \frac{\operatorname{Var}(m^{k}(\mathbf{x}_{i}^{f}, \boldsymbol{\theta}))}{\underset{i=1, \cdots, n}{\operatorname{max}} \operatorname{Var}(m^{k}(\mathbf{x}_{i}^{f}, \boldsymbol{\theta}))} \right)$$

where $Var(m^k(\mathbf{x}_i^t, \boldsymbol{\theta}))$ is computed with respect to $\pi(\boldsymbol{\theta})$.

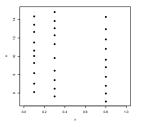
criterion 2 = trade-off between uncertainty on F^{D_k} for (x_i^f, θ_{k+1}) and sensibility of $F^{D_k}(x_i^f, \theta)$ to θ

Comparison full EI / EI one at a time



Additional comments

■ Choice of \mathbf{D}_0 : restricted-to- \mathbf{X}^f maximin LHD, so called because they are maximin on $\mathbf{X}^f \times \mathcal{T}$ and LH on \mathcal{T} .



■ A GPE can be used to emulate $\theta \to SS(\theta)$ instead of f (Pratola et al., 2013) but OAT strategies not available.

Outline

- 1 Bayesian calibration
 - Two kinds of data
 - Bayesian Calibration
 - Meta-modeling / emulator of the computer code
 - Calibration with emulator
- 2 Sequential design for calibration
 - Expected Improvement Criterion
 - El for calibration
- 3 Numerical simulations
- 4 Conclusion

Sobol function

$$\mathbf{x} \in \mathcal{X} = [0, 1]^3, \, \boldsymbol{\theta} \in \mathcal{T} = [0, 1]^3$$

$$f_{\theta}: \mathbf{x} \in \mathcal{X} \longrightarrow f_{\theta}(\mathbf{x}) = \prod_{i=1}^{3} \frac{|4x_i - 2| + \theta_i}{1 + \theta_i}.$$

Field measurements \mathbf{y}^{f} chosen according to a maximin LHD on \mathcal{X} of size n = 60. For 1 < i < 60,

$$y_i^f = f_{\theta}(x_i^f) + \epsilon_i,$$

where $\epsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 0.05^2)$ and $\theta = (0.55, 0.55, 0.1)$.

GPE is fitted with a constant mean $m_{\beta}=m$ and a Matérn 5/2 correlation function.

Prior distribution $\pi(\theta)$ on \mathcal{T} :

$$\pi(\boldsymbol{\theta}) \propto \mathbf{1}_{[0,1]^3}(\boldsymbol{\theta}).$$

Designs

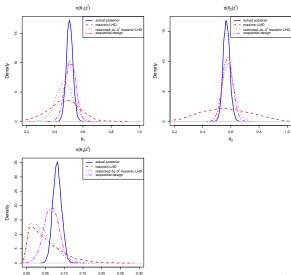
Number of simulations M = 150.

Comparison of 4 designs.

- 1 Maximin LHD in 6D: $\mathcal{X} \times \mathcal{T} = [0, 1]^6$.
- Restricted-to-X^f maximin LHD.
- **Sequential designs OAT with GPE variance criterion for choosing** \mathbf{x}_{k+1}^{\star} .
- Sequential designs OAT with trade-off (GPE-variance, variability of f w.r.t. x) (variance criterion for choosing x_{k+1}^{*}.

Sequential designs based on an initial design with $M_0 = 75$ points chosen as a *Restricted*-to- \mathbf{X}^i maximin LHD.

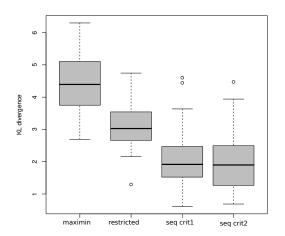
Marginal posterior distributions



Assessing Robustness

- Simulation of 50 data set with θ sampled uniformly $[0,1]^3$.
- For each data set, surrogate posterior distribution sampled 10 times according to different GPEs constructed with M = 150 simulations.
- Performance of Designs evaluated in terms of the KL divergence between the surrogate posterior distribution and the actual posterior distribution.
- Boxplots are made with 50 values (one per data set), each of them being calculated as the mean of the 10 KL divergence values.

Robustness



Outline

- Bayesian calibration
 - Two kinds of data
 - Bayesian Calibration
 - Meta-modeling / emulator of the computer code
 - Calibration with emulator
- 2 Sequential design for calibration
 - Expected Improvement Criterion
 - El for calibration
- 3 Numerical simulations
- 4 Conclusion

Conclusion and perspective

What is done:

- Designs of numerical experiments adapted to calibration purpose (restriction of the space and sequential strategy),
- Robustness in calibration.

Open questions:

- Higher dimension questions, number of field experiments, efficient search of θ^* .
- New field experiments ?
- discrepancy issues ?

References

Damblin, G., Barbillon, P., Keller, M., Pasanisi, A. et Parent, É (2015). Adaptive numerical designs for the calibration of computer codes.

arXiv:1502.07232.

Calibration of computer models

- Dave Hidgon et al., 2005. Combining Field Data and Computer Simulations for Calibration and Prediction. SIAM 26(2).
- Marc Kennedy and Anthony O'Hagan, 2001. Bayesian Calibration of Computer Models. Journal of the Royal Statistical Society B 68.
- Jenny Brynjarsdóttir and Anthony O'Hagan, 2013. J. of Uncertainty Quantification.
- Liu, F., Bayarri, M., and Berger, J. (2009). Modularization in Bayesian analysis, with emphasis on analysis of computer models.
 Bayesian Analysis, 4(1):119–150.
- Pratola, M., Sain, S., Bingham, D., Wiltberger, M., and Rigler, E. (2013). Fast sequential computer model calibration of large nonstationary spatial-temporal processes. Technometrics, 55(2):232–242.

Optimization

Donald Jones et al., 1998. Efficient Global Optimization of Expensive Black-Box Functions. Journal of Global Optimization 13(4).

Gaussian Process emulator:

- Thomas Santner et al., 2003. The Design and Analysis of Computer Experiments. Springer-Verlag.
- Kai-Tai Fang et al., 2006. Design and Modeling for Computer Experiments. Computer Science and Data Analysis. Chapman & Hall/CRC.

R

packages Dice....

