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What kind of information do we manipulate in a mono-disciplinary context?

Elements of information

A reference database (Y∗1, · · · ,Y
∗
n) or ((X∗1,Y

∗
1), · · · , (X∗n,Y

∗
n))

that is enriched during the design cycle.
A set of risk measures (ρ1(Y∗), · · · , ρd (Y∗)) built upon Y∗ to be
estimated during the design cycle.
A panoply of numerical models H = {h1, · · · , hD} representing
the phenomenon at different levels of fidelity/adequacy
(Y∗ ≈ hi (X[i ], θ[i ])

A quantification of the uncertainties attached to the inputs of
the numerical models represented by a statistical law PX[i ] that is
enriched during the design cycle
A global computational budget B
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Our motivation in terms of computer experiments

Goal
Let Q be the unknown probability measure associated to the real random
variable Y∗ defined over (RQ ,B(RQ),Q). Our goal is to predict one or
several features ρ(Q) ∈ F of the distribution Q (also abusively noted
ρ(Y∗)). This feature corresponds to the measure of risk over our variable
of interest Y∗.

Examples of probabilistic measures of risk ρ(Y∗)

Mean: ρ(Y∗) = E [Y∗] ∈ F = R
Variance: ρ(Y∗) = Var [Y∗] ∈ F = R+

Quantile: ρ(Y∗) = qr (Y∗) ∈ F = R+

Probability: ρ(Y∗) = P (Y∗ ∈ DP ) ∈ F = [0, 1]

CDF: ρ(Y∗) = P (Y∗ ≤ y∗) ∈ F = Fcdf (RQ , [0, 1])

PDF: ρ(Y∗) = fY∗(y∗) ∈ F = Fpdf (RQ ,R+)
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Our motivation in terms of computer experiment

Properties of a numerical model h

Dimension: h is classically a real function belonging to F(RP × RT ,RQ ).
Even if the dimension of x can be large, most of the engineering problems
we are focused on only contain P ≤ 100 and Q ≤ 20.

Computational budget: A single computation of h can be very expensive.
The computational budget B will be represented by the number m of runs
affordable to solve the problem.

Black box/white box: h is either a black box (the inner operations of the
model are not accessible), a grey box (part of the inner operations is
accessible) or a white box (all the operations of the model are accessible).

Mathematical properties: the basic mathematical properties (regularity,
monotony, linearity or non linearity towards certain parameters) may be
unknown to the engineer.

Domain of validity: h should be delivered with its domain of validity
V [ε] ⊆ RP × RT .
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Uncertainty attached to “modelling” activities
“Model” uncertainty in a mono disciplinary context

Reference model h∗: Usually not
accessible, expression of a natural or a
complex technical object.

Theoretical model hth: Scientific expert
activity (modelling activity, theoretical
solution of a PDE system, ...),
corresponding to the level of
understanding and simplification of the
problem.

Numerical model hnum: Numerical
solution of the theoretical model (effects
of meshing, choice of a numerical
scheme, truncature effects, ...)

Implementation model h: Software
implementation of the model on a given
hardware architecture (computer
accuracy, choice of coding rules, ...)

h∗  h

x

y Original phenomenon

Theoretical model

Numerical model

Implementation  model h

h*

hthth

hnum
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Uncertainty attached to “modelling” activities

Parametric input uncertainty

For a given numerical model h : (x, θ) ∈ X ×Θ 7→ y = h(x, θ) ∈ Y, we consider
an uncertainty attached to the input variables X modelled by a statistical
law P∗X.

In practical contexts, it is often difficult to build P∗X due to scarsity of data,
heterogeneous database, lack of information on the dependency, ... As a matter
of fact, one has to work with an approximate statistical law PX.

P∗X  PX

Computational budget B
In many situations, it is difficult to compute analytically the risk measures
ρ(h(X, θ)). Numerical methodsM(B, ε, h(X, θ) (either stochastic or not) are
required using a fixed computational budget B for a given accuracy ε

ρ(h(X, θ)) M(h(X, θ),B, ε)
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How to manage all the components of the error?

Recap of the errors in a mono disciplinary context

1 Building of the model: NS(h∗, hth)

2 Numerical approximation: NN (hth, hnum)

3 Hardware/Software implementation: NI(hnum, h)

4 Model paramaters uncertainty: NQ(P∗X,PX)

5 Uncertainty propagation error: NP(ρ(h(X, θ)),M(h(X, θ),B, ε))

Naive form of the total error
∆ ≤ NS(h∗, hth)︸ ︷︷ ︸

Scientific Validation

+ NN (hth, hnum)︸ ︷︷ ︸
Numerical Validation

+ NI(ĥ, h)︸ ︷︷ ︸
Hardware/Software Validation

+ NQ(PX
∗ ,PX )︸ ︷︷ ︸

Statistical Validation

+NP (ρ(Y ), ρ̂B(Y ))︸ ︷︷ ︸
Propagation Validation
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Challenge C1: To develop a ”global“ UQ approach (1/3)

Prediction of the feature ρ(Q) = ρ(Y∗) thanks to a pre defined model
h(x, θ) = y, a statistical law PX and a numerical methodM(q, ε)

Model uncertainty: The probability measure Q being unknown, it is
approximated by the composition of a model h, defined over X ×Θ and a
statistical law PX. Thus, it is possible to approximate the feature ρ(Y∗) by
ρ(h(X, θ)).

ρ(Y∗) ≈ ρ(h(X, θ̂n))

θ is calibrated to θ̂n thanks to the reference database (Y∗1 , · · · ,Y∗n ) or
((X∗1 ,Y

∗
1), · · · , (X∗n ,Y∗n ))

Quantification uncertainty: The statistical law PX may be biased for statistical
reasons if only p values are available. Thus, ρ(h(X, θ)) is obtained through:

ρ(h(X̂p , θ̂n))
p→∞−−−−→ ρ(h(X, θ̂n))

Propagation uncertainty: As it is quite rare to compute exactly ρ(h(X, θ)), it is
approximated by either a deterministic or a stochastic numerical methodM. M
is characterized by its accuracy ε for a given budget of computations B.

M(h(X, θ),B, ε)
B→∞,ε→0−−−−−−−−→ ρ(h(X, θ))
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Challenge C1: To develop a ”global“ UQ approach (2/3)

Prediction of the feature ρ(Q) = ρ(Y∗) thanks to a pre defined model
h(x, θ) = y, a statistical law PX and a numerical methodM(q, ε)

Surrogate modelling uncertainty:

Strategy 1 ”Build & replace strategy“: The computational budget B
is used in two steps. First, a surrogate model h̃ is built upon a
budget B′ < B. Then, the model h is replaced by h̃ to be used by
the propagation methodM′. It yields to :

‖M′
(
h̃B′(X, η),B − B′, ε

)
−ρ(h(X, θ)‖ ≤ ‖M(h(X, θ),B, ε)−ρ(h(X, θ)‖

Strategy 2 : ”Build & collaborate strategy“: The final approximation
with numerical methodM′ should be more accurate in a certain
sense ‖‖ than the previous one:

‖M′
(
h(X, θ), h̃B′(X, η),B, ε

)
−ρ(h(X, θ)‖ ≤ ‖M(h(X, θ),B, ε)−ρ(h(X, θ)‖
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Challenge C1: To develop a ”global“ UQ approach (3/3)

Summary approach

Example:
Estimators In the particular case when the budget B is used for N
number of computations of h and M computations of the surrogate
model:

Ê1(M,N, p, n) = ρ̂M (h̃N (X̂p, θ̂n))

Ê2(N, p, n) = ρ̂N (h(X̂p, θ̂n))

Cost model

C(B, p, n) = αsimu(B) + βinput data(p) + γinput ref (n)

Classically,

αsimu(B) < βinput data(p) << γinput ref (n)
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Challenge C2: To build efficient goal-oriented surrogate models (1/3)

Surrogate modelling
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Challenge C2: To build efficient goal-oriented surrogate models (2/3)

Surrogate modelling
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Challenge C2: To build efficient goal-oriented surrogate models (3/3)

Surrogate modelling

Integrate the objective of the computation in the building phase of
the surrogate model: optimization, reliability analysis, sensitivity
towards a specific risk measure.
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Challenge C3: To develop a goal-oriented sensitivity analysis

Sensitivity analysis to the choice of predefined model h(x, θ) = y and
the statistical law PX on the prediction of the feature ρ(Q) = ρ(Y∗)

The probability measure Q being unknown, it is approximated by the
composition of a model h, defined over X ×Θ and a statistical law PX. Thus, it
is possible to approximate the feature ρ(Y∗) by ρ(h(X, θ)).

ρ(Y∗) ≈ ρ(h(X, θ))

Influence of the group of input variables XK (K ⊆ {1, · · · ,P}) on the feature of
interest ρ(h(X, θ)):

E
[
ρ(h(X, θ)|XK = xK )

]
= ρ(h(X, θ)) ??

Influence of the statistical model PX on the feature of interest ρ(h(X, θ))

ρ(h(P1
X, θ)) = ρ(h(P2

X, θ)) ??

Influence of the choice of model hi among the panoply of model
H = {h1, · · · , hD}

ρ(hi (X(i), θ(i))) = ρ(hi (X(i), θ(i))) ??
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Challenge C4: To develop a dynamic UQ approach

Description of the situation

A target T is given to the variable y∗. This target can evolve during
the time of the design.
These performances are uncontrolled for many reasons (lack of
knowledge, variability, approximation, dependency, ...).
The amount of available information I for each variable y∗i evolves
during the time of the design (either over the knowledge of the input
variables, parameters, mesurements, availability of numerical
models).
At a given time of the design, these technical performances must be
estimated with a level of confidence.
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Challenge C4: To develop a dynamic UQ approach

Figure: Evolution of a performance during the design phase
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Challenge C4: To develop a dynamic UQ approach

Figure: An uncertainty study at a given time of the design
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Challenge C4: To develop a dynamic UQ approach
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Challenge C4: To develop a dynamic UQ approach

Objectives in a mathematical framework

In a probabilistic framework, two main goals can be identified:
1 To control the stochastic behaviour of the performances y∗ to reach

the initial or adapted target T .
2 To estimate on-demand some measures of risks ρ(Y∗) during the

time of the design.
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C4: Moving from Uncertainty Quantification to Margin Modelling

Definition

A margin M is a quantity that aims at covering the risk that a given
performance of a system measured by Ycapable does not reach the given target
Yrequired

M = RC (d(Ycapable ,Yrequired )‖I,K)

where

R is the risk measure defined over the set of configurations C
d() measures the "distance"

I is the information available when assessing the margin

K is the knowledge available when assessing the margin

Examples

M = max
C
‖Ycapable − Yrequired )‖

M = qαC (Ycapable − Yrequired )
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Challenge C5: To develop Robust Optimization (1/4)
Step RO-1: Problem Specification

Goal:
Describe what has to be solved

Information:
Cost/Objective function(s) to minimize/maximize

J : (x, ξ) ∈ X × Ξ 7→ J (x, ξ) ∈ Rk

- x ∈ X ⊂ RP= parameters to optimize
- ξ ∈ Ξ ⊂ RQ= variables supposed to be dispersive

Set of Constraint functions C = (C1, ...,Cp) on X × Ξ,
Requirements R and induced feasible Domain D

D = {x ∈ X , C(x, ξ) ∈ R}

Mathematical/Computational complexity of Objective/Constraint
function(s) (Nonlinearity, smoothness, gradients availability, CPU
cost, approximations, etc.)
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Challenge C5: To develop Robust Optimization (2/4)

Step RO-1: Problem Specification

Goal:
Describe what has to be solved. Information:

Uncertainties identification:
- What are the variables that would be subjected to uncertainties ?...

Needs in terms of Robustness:
- Which behaviour (w.r.t uncertainties) do we want to avoid in the
cost function ?

Needs in terms of Risk/Reliability:
- What behaviour (w.r.t uncertainties) do we want to avoid in the
constraints ?...
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Challenge C5: To develop Robust Optimization (3/4)

Step RO-2: Robustness & Risk formulation

Goal:
Describe formally a robust and reliable version of the initial problem
Information:

RO-2(1): Quantify the sources of uncertainties on ξ ∈ Ξ, x, J and
C

RO-2(2): Define a Robustness Measure ρJ for Objective
function(s)

RO-2(3): Define a Risk Measure ρC for Constraint functions, an
associated confidence region Rα.
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Challenge C5: To develop Robust Optimization (3/4)

Step RO-3: Resolution

Goal:
Define efficient algorithmic strategy to solve the robust/reliable
formulation problem

x̂ = Argmin
x∈DPξ,ρC,Rα

ρJ (J (x, ξ))

Information:
What are the software resources (memory, cores, etc.) ?
What is the error tolerance allowed ?
Define a numerical strategy to compute the robust version of the
objective function ρJ (J (x, ξ))

Define a numerical strategy to explore the domain DPx,ρC,Rα ⊂ X
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Challenge C5: To develop Robust Optimization (4/4)

Step RO-3: Resolution
OP = Optimization Problem
Rob = Robust
CC = Chance Constraints
ICC = Individual Chance Constraints
JCC = Joint Chance Constraints 

Original OP

Non-Constrained 
OP Constrained OP

Parametric OP

Robust & 
Reliability OP

Rob-OP CRob-OP CCRob-OP CC-OP

Initial OP

Variability 
Identification

Uncertainty 
Modeling

ICCRob-OP

JCCRob-OP

ICC-OP

JCC-OP

Pure Robustness Problem Robustness & Reliability Problem Pure Reliability Problem
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C6: To develop Multi Disciplinary Uncertainty Quantification

Elements of information in a multi-disciplinary context

A reference database
(
Y[ j,∗]

1 , · · · ,Y[ j,∗]
n

)
or(

(X[ j,∗]
1 ,Y[ j,∗]

1 ), · · · , (X[ j,∗]
n ,Y[ j,∗]

n )
)
that is enriched during the design

cycle for each discipline j ∈ J.

A set of risk measures (ρ1(Y[ j,∗]), · · · , ρdj (Y
[ j,∗])) built upon Y[ j,∗] to be

estimated during the design cycle.

A panoply of numerical models H[j] = {h[j]
1 , · · · , h

[j]
Dj
} that is enriched

during the design cycle.

A quantification of the uncertainties attached to the inputs of the
numerical models represented by a statistical law PX[ j] that is enriched
during the design cycle

A definition of the target T [ j] and its associated level of confidence α[ j]

to be reached that is enriched during the design cycle.

A global computational budget B[ j] that can be allocated at different
times of the design cycle.
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C6: To develop Multi Disciplinary Uncertainty Quantification

How to go from deterministic MDO to probabilistic MDO ?
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Our collaborative platform : the Open TURNS software
platform

Open SOURCE License

Core partners

Community

~100 active users
~10000 regular downloads 
from 81 countries

User community

Technologies

Activity

Software activity
Consortium : ~2 man.year
AGI : ~0,5 man.year
Advanced functionalities
~3/4 PhDs running around 
consortium
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Lessons learnt

This topic has emerged 10 years ago in our environment, mainly
coming from academic side.
Benefits are expected when coordinated approach is available @
industrial process lelvel and not only @ disciplinary level.
Difficulty to transfer this technology: training !
Still a lot of R&T topics to take into account the engineering usages
of uncertainty quantification
Many R&T communities to dialog with !
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BACK-UP SLIDES
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Sources of uncertainty in this use-case (1/3)
AIRCRAFT

Meters

COMPARTMENTS
/SYSTEMS

Meters/Centimeters

EQUIPMENTS
/COMPONENTS

Centimeters/
Millimeters

Multi scale modelling of the phenomena
Solving aerothermal, thermal and electric equations

Sources of uncertainty: system design variables

Variability linked to thermal parameters (composite materials,
junction, installation parameters).
Lack of knowledge of the detailed behaviour of some electronic
equipments (Printed Circuit Board, chips, ...).
Complexity of the system definition.

Page 31



UQ&M in aero-engineering practices November 23, 2016

Sources of uncertainty in this use-case (2/3)

External conditions

Several locations

Phases of flight

Real operative conditions

Sources of uncertainty: environmental variables

Likelihood of occurence of a lightning strike in a given area.
Variability of the lightning strike (current level, signal shape, ...).
Zoning of the attachment zone on the aircraft.
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Sources of uncertainty in this use-case (3/3)

inertia

J=5e-4
T

turbine

dis?

heat?
0?

C
compres?

xPi?xPi?
2

xPi?xPi?
2

0?

PHX1
0.00

RHX1
0?

xP
i?

xP
i? 2

xPi?

m
?

0.0

ma?

0.0

0.0K

l?l?PI
T=1

l?l?
-f?C?

k=24

pr?

te?

te?

dis?

dis?

dis?

dis?

dis?

ma?
0.0

m
bo?
T

fix?

m
bo?

fix?

T_head

po?

po?

co
nt

ro
lB

us c?

Aircraft

Cabin

eBay

Chip
Control 
System

Sources of uncertainty: modelling
approximations

Approximation linked to the choice of
the Navier-Stokes equation.

Choice of the 3D numerical scheme
(Finite Volume, nodal methods Method,
...).

Coupling inside the zones and with
control/command systems.

Non linear behaviour of the radiating
effects.

...

Sources of uncertainty: test
uncertainties

Representativity of on-ground test
facilities.

Reproductibility of test set-ups.

Calibration of test devices.
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