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What kind of information do we manipulate in a mono-disciplinary context?
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m A reference database (Y7, -, Y;) or (X7,Y71), -, (X, Y}))
that is enriched during the design cycle.

m A set of risk measures (p1(Y"), -, pa(Y™)) built upon Y* to be
estimated during the design cycle.

m A panoply of numerical models # = {hy,--- , hp} representing
the phenomenon at different levels of fidelity/adequacy
(Y* ~ by (X1 gl

m A quantification of the uncertainties attached to the inputs of
the numerical models represented by a statistical law Py that is
enriched during the design cycle

m A global computational budget 5
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Our motivation in terms of computer experiments

Let Q be the unknown probability measure associated to the real random
variable Y* defined over (R, B(R¥),Q). Our goal is to predict one or
several features p(Q) € FF of the distribution Q (also abusively noted
p(Y™)). This feature corresponds to the measure of risk over our variable

of interest Y*.

Mean:
Variance:
Quantile:

Probability:
CDF:
PDF:

Page 5

p(Y*) =E[Y"]
p(Y*) = Var [Y"]
p(Y*) = 4,(Y")
p(Y*) = P(Y* € Dp)
p(Y*) = P(Y* <y*)
p(Y*) = - (y)

eF=R
eF=R;
ceF=R,
eF=10,1]

clF = .chf(RQ, [0, 1])

€F = Four (RO, Ry)
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Our motivation in terms of computer experiment

m Dimension: h is classically a real function belonging to F(R” x R7 R?).
Even if the dimension of x can be large, most of the engineering problems
we are focused on only contain P < 100 and Q < 20.

m Computational budget: A single computation of h can be very expensive.
The computational budget B will be represented by the number m of runs
affordable to solve the problem.

m Black box/white box: h is either a black box (the inner operations of the
model are not accessible), a grey box (part of the inner operations is
accessible) or a white box (all the operations of the model are accessible).

m Mathematical properties: the basic mathematical properties (regularity,
monotony, linearity or non linearity towards certain parameters) may be
unknown to the engineer.

m Domain of validity: h should be delivered with its domain of validity
yld C RP x RT.
AIRBUS
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Uncertainty attached to “modelling” activities
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Reference model h*: Usually not
accessible, expression of a natural or a
complex technical object.

Theoretical model h,: Scientific expert
activity (modelling activity, theoretical
solution of a PDE system, ...),
corresponding to the level of
understanding and simplification of the
problem.

Numerical model h,y,: Numerical
solution of the theoretical model (effects
of meshing, choice of a numerical
scheme, truncature effects, ...)

Implementation model h: Software
implementation of the model on a given
hardware architecture (computer
accuracy, choice of coding rules, ...)

h* ~~ h

ABSTRACTION

REAL - NMERICAL
PHENOENON Ymcﬁs
t J—

e
Ne o
aor
cors

—— Original phonomenon h,

= = Theoretcal model by
== Numerical model h, .
implementation model h
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Uncertainty attached to “modelling” activities

m For a given numerical model h: (x,0) € X x © — y = h(x,0) € Y, we consider
an uncertainty attached to the input variables X modelled by a statistical
law P .

X

m In practical contexts, it is often difficult to build P} due to scarsity of data,
heterogeneous database, lack of information on the dependency, ... As a matter
of fact, one has to work with an approximate statistical law Px.

P ~ Px

m In many situations, it is difficult to compute analytically the risk measures
p(h(X,0)). Numerical methods M(B, e, h(X, 6) (either stochastic or not) are
required using a fixed computational budget B for a given accuracy &

p(h(X,0)) ~ M(h(X,0),B,e)
AIRBUS
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How to manage all the components of the error?

Building of the model: Ns(h*, hs)
Numerical approximation: N (heh, Pnum)

BNE

Hardware/Software implementation: Nz(hnum, h)
B Model paramaters uncertainty: Ng(Pk, Px)
Uncertainty propagation error: Np(p(h(X,8)), M(h(X,0),B,¢))

]

A< Ns(h*, hen)
———
Scientific Validation

+ NN(hthyhnum) r NI(FI, h)

Numerical Validation  Hardware / Software Validation
+ No(PLPY) +Np(p(Y),45(Y))

Statistical Validation Propagation Validation AIRBUS
GROUP

Page 9



UQ&M in aero-engineering practices November 23, 2016

Outline
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Challenge C1: To develop a "global” UQ approach (1/3)
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m Model uncertainty: The probability measure Q being unknown, it is

approximated by the composition of a model h, defined over X x © and a
statistical law Px. Thus, it is possible to approximate the feature p(Y*) by
p(h(X,0)). )

p(Y*) = p(h(X, 05))
0 is calibrated to 8, thanks to the reference database (YI,---,Y%) or
((XLY;L ) (XﬁvY;kw))

Quantification uncertainty: The statistical law Px may be biased for statistical
reasons if only p values are available. Thus, p(h(X, 6)) is obtained through:

p(h(Xp, 0n)) 2= p(h(X, bn))

Propagation uncertainty: As it is quite rare to compute exactly p(h(X, 0)), it is
approximated by either a deterministic or a stochastic numerical method M. M
is characterized by its accuracy ¢ for a given budget of computations B.

M(h(X,8), B, ) ZZ220% pp(x,0)) AIRBUS

GROUP
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Challenge C1: To develop a "global” UQ approach (2/3)

m Surrogate modelling uncertainty:

m Strategy 1 "Build & replace strategy": The computational budget B

is used in two steps. First, a surrogate model h is built upon a
budget B’ < B. Then, the model h is replaced by h to be used by
the propagation method M’. It yields to :

M’ (Bisr(X,m), B = B',&) =p(h(X, )| < [[M(A(X,0), B, ) —p(h(X, 0)|

m Strategy 2 : "Build & collaborate strategy”: The final approximation
with numerical method M’ should be more accurate in a certain
sense |||| than the previous one:

M’ (h(X7 9), hi (X, n), B, 8) —p(h(X, 0)|| < [IM(h(X,0), B,¢)—p(h(X,0)|
AIRBUS

GROUP
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Challenge C1: To develop a "global” UQ approach (3/3)

Example:

m Estimators In the particular case when the budget B is used for N
number of computations of h and M computations of the surrogate
model:

‘é\l(M7 N7 P, n) = ﬁM(EN(XP’ é\"’))
E(N, p, n) = pn(h(Xp, 6,))
m Cost model
C(B, p, n) = simu(B) + Binput data(P) + Yinput rer(n)

Classically,

asimu(B) < Binput data(p) << Yinput ref(n)
AIRBUS

GROUP
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Challenge C2: To build efficient goal-oriented surrogate models (1/3)

Surrogate modelling

Results Surrogate Modelling on Air Fc\l I_evel

Geod adjustmant of the mata-medal with the medal an the tast databasa

Chaos marginal=0, Q2=0,098775734457, q=0.547 Chaos marginal=1, Q2=0.999662198799, q=0.5
s 3 -
o 2
o 2
g iz
£ H
3 P 2
] 3
- a
3 2
{o 05 wo ds 1o 18 28 oo a1 oz o0a 4 o5 o8
modal model

¥ Farthe tif cosfficiant with s (02 coctriciant of 99.87% the hyperbolicity axpanant is 5=0.547

¥ Thetorstdegres iz 30, meaning thatthe Function is significsntly nanlincar

¥ Forthe drag coafficient with 2 02 coefficiont of 39.96% the hyporbolicity exponant iz =05

includes lass interactions batwean tha paramaetars than for the lift coafficient

A

The totat dagras is 35 the non-linearity is mara proncuncad than for tha lift caefficiant
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Challenge C2: To build efficient goal-oriented surrogate models (2/3)

[mpiementation Improvements in Open TURNS
ln order to improve the pertormance of the SPCE olgorithm, we impiementad the following improvements’

Parsilalizad the avaluation of the pelynomial basis 2= wall as tha iso-probabilistic ransformation that maps the

probability distribution of the uncartainties inte the messure szsocistad to tha orthoganal palynomisl basis

Switehed to highly efficien ¢ OpenBLAS that cnables for a paraliel spprosch far the linear algebra part of the
computations

Switched to the narmal squation instesd of the OR dacemposition to zoive the laast-aqus

cs prosiams (normal
cumtion basames mars wall-candiionad when the

|

OpenTURNS 1.2 OpanTURNS 1.3 OpenTURNS 1.4

Time (=) 43040 19089
Seomz 1 2.25

2332
18.45

sdditionsi Kriging spproach nas besn investigstad to model tha residuals

Forthe global bahaviour only a small quality increase is schisvad at ralatively high costs
© Aignificant gain can only be observed near tha stall region (which is out of aur scape hara)
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Challenge C2: To build efficient goal-oriented surrogate models (3/3)

m Integrate the objective of the computation in the building phase of
the surrogate model: optimization, reliability analysis, sensitivity
towards a specific risk measure.
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Challenge C3: To develop a goal-oriented sensitivity analysis

m The probability measure Q being unknown, it is approximated by the
composition of a model h, defined over X x © and a statistical law Px. Thus, it
is possible to approximate the feature p(Y*) by p(h(X,0)).

p(Y*) = p(h(X,0))

= Influence of the group of input variables XX (K C{1,---,P}) on the feature of
interest p(h(X,0)):

E [p(h(X,0)X¥ = x)| = p(h(X,6)) 77

m Influence of the statistical model Px on the feature of interest p(h(X, 0))
p(h(P,0)) = p(h(P%,6)) 77

m Influence of the choice of model h; among the panoply of model
H={h, - ,hp}

(XD oYY — o(h (XD (i) AIRBUS
p(hi(X\,017)) = p(hi(XY,017)) 77 e
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Challenge C4: To develop a dynamic UQ approach

m A target 7 is given to the variable y*. This target can evolve during
the time of the design.

m These performances are uncontrolled for many reasons (lack of
knowledge, variability, approximation, dependency, ...).

m The amount of available information Z for each variable y* evolves
during the time of the design (either over the knowledge of the input
variables, parameters, mesurements, availability of numerical
models).

m At a given time of the design, these technical performances must be
estimated with a level of confidence.
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Challenge C4: To develop a dynamic UQ approach

Performance Y;

N

T Lower
Confidence
Inacceptable Bound
Domain <
time
T T T T
1 2 3
0

Figure: Evolution of a performance during the design phase AIRBUS

GROUP
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Challenge C4: To develop a dynamic UQ approach

Performance Y;

Target
Domain N
LA

‘\\"

N

g\ § onfidence EE

N
NN

'////

Lower
Confidence
Inacceptable Bound
Domain <
Uncertainty study
attime t
time
7t T, (N T

0

Figure: An uncertainty study at a given time of the design AIRBUS
GROUP
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Challenge C4: To develop a dynamic UQ approach

Performance y,

Uncertainty Study
attime t of
the design cycle

Probability
Density
Function

Inacceptable

/ Domain
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Challenge C4: To develop a dynamic UQ approach

In a probabilistic framework, two main goals can be identified:
To control the stochastic behaviour of the performances y* to reach
the initial or adapted target 7.

To estimate on-demand some measures of risks p(Y*) during the
time of the design.

AIRBUS

GROUP
Page 18



UQ&M in aero-engineering practices November 23, 2016
C4: Moving from Uncertainty Quantification to Margin Modelling

Definition

A margin M is a quantity that aims at covering the risk that a given
performance of a system measured by Y capasie does not reach the given target

Yrequr'red
M = Re (d(YcapabIeg Yrequired) ||I7 K:)

where
m R is the risk measure defined over the set of configurations C
m d() measures the "distance"
m 7 is the information available when assessing the margin

m K is the knowledge available when assessing the margin

Examples
M = mélX ”Ycapable - Yrequired)”

M= qg (Ycapable — Yrequired )
AIRBUS
GROUP
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Challenge C5: To develop Robust Optimization (1/4)

Goal:
Describe what has to be solved

Information:

m Cost/Objective function(s) to minimize/maximize

T (%€ eX xZ J(x, &) e RK

- x € X C R”= parameters to optimize
- ¢ € = C R®= variables supposed to be dispersive
m Set of Constraint functions C = ((, ..., Cp) on X x =,
Requirements R and induced feasible Domain D

D={xc X, C(x,&)eR}

m Mathematical/Computational complexity of Objective/Constraint
function(s) (Nonlinearity, smoothness, gradients availability, CP
(5) (Nonlinearity g Y AikBUS
cost, approximations, etc.) GROUP
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Challenge C5: To develop Robust Optimization (2/4)

Goal:
Describe what has to be solved. Information:

m Uncertainties identification:
- What are the variables that would be subjected to uncertainties ?...
m Needs in terms of Robustness:
- Which behaviour (w.r.t uncertainties) do we want to avoid in the
cost function ?
m Needs in terms of Risk/Reliability:

- What behaviour (w.r.t uncertainties) do we want to avoid in the
constraints 7...

AIRBUS

GROUP
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Challenge C5: To develop Robust Optimization (3/4)

Goal:
Describe formally a robust and reliable version of the initial problem
Information:

m RO-2(1): Quantify the sources of uncertainties on £ € =, x, J and
C

m RO-2(2): Define a Robustness Measure p s for Objective
function(s)

m RO-2(3): Define a Risk Measure pc for Constraint functions, an
associated confidence region R .

AIRBUS
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Challenge C5: To develop Robust Optimization (3/4)

Goal:
Define efficient algorithmic strategy to solve the robust/reliable
formulation problem

x= Argmin p7(J(x,£))

X€Dpe pe R

Information:
m What are the software resources (memory, cores, etc.) ?
m What is the error tolerance allowed ?

m Define a numerical strategy to compute the robust version of the
objective function p7(J(x, £))

m Define a numerical strategy to explore the domain Dpx ,. z., C X

AIRBUS
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Challenge C5: To develop Robust Optimization (4/4)

Initial OP
Variabilty
Identi cation

Parametric OP
Uncertainty
Modeling

Robust &
Reliability OP
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Original OP

Non-Constrained
oP

n

Constrained OP

=
A

November 23, 2016

OP = Optimization Problem

Rob = Robust

CC = Chance Constraints

ICC = Individual Chance Constraints
JCC = Joint Chance Constraints

(x)

v

[P

i J(x. €)
min J(x,€) =
* Julx) <0, Vk € K

Rob-OP CRob-OP

inl2(J(x, =
min 5(J(x, 5)) min 27 (<, Z)
) Ji(x) 0, Vke K

Pure Robustness Problem

min J(x, §)

Sr(x,6) 0, Yk e K

min J(x)

Ji(x,€) =0, Vk e K

CCRob-OP

Cc-oP

ICCRob-OP
min (. (x, £))

P(fi(x.E) <0) = ay, Yk € K

fcc-oP min J(x)

(f1(x,B) £0) =, Vh € K

JccRob-0P
win £(J(x

(fi(x.B) <0, Vk e K) > o

fecor  minJ(x)

F(fr(x,Z) £0,Vk € K) = a

Robustness & Reliability Problem

ity Problem
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C6: To develop Multi Disciplinary Uncertainty Quantification
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A reference database (Y[lj’*], e ,YE,J"*]) or

((x[lf’*l, Yy (G, YLJ**’)) that is enriched during the design
cycle for each discipline j € J.

A set of risk measures (p1(Y/*), ... ,pdj(YU’*])) built upon Y/*) to be
estimated during the design cycle.

A panoply of numerical models #U! = {h¥], - ,h%l} that is enriched
during the design cycle.

A quantification of the uncertainties attached to the inputs of the

numerical models represented by a statistical law Py;;; that is enriched
during the design cycle

A definition of the target 71/ and its associated level of confidence al’!
to be reached that is enriched during the design cycle.

A global computational budget B!/ that can be allocated at different
times of the design cycle. AIRBUS

GROUP
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C6: To develop Multi Disciplinary Uncertainty Quantification

How to go from deterministic MDO to probabilistic MDO 7

AIRBUS
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Outline
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Our collaborative platform

platfo

C++
@ python

@

eEl. ®rumry

DS SSNVIED AD )

Software activity
Consortium : ~2 man.year
AGI : ~0,5 man.year

Advanced functionalities
~3/4 PhDs running around
consortium
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[ open SOURCE License |

~'~

Sy Aneus

@ IMACS

PHIMECA

November 23, 2016

the Open TURNS software

(~100 active users )

~10000 regular downloads
\ from 81 countries )

User community
(Y- ~ avrran )

OMNERA

g
S SAFRAN

D rorac

.. Technip
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Lessons learnt
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This topic has emerged 10 years ago in our environment, mainly
coming from academic side.

Benefits are expected when coordinated approach is available @
industrial process lelvel and not only @ disciplinary level.

Difficulty to transfer this technology: training !

Still a lot of R&T topics to take into account the engineering usages
of uncertainty quantification

Many R&T communities to dialog with !
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BACK-UP SLIDES
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Sources of uncertainty in this use-case (1/3)

COMPARTMENTS iy l};f‘i‘ r
/SYSTEM 5 % ¥ II
:
EQUIPMENTS
/COMPONENTS m
meters

Sources of uncertainty: system de5|gn varlables

m Variability linked to thermal parameters (composite materials,
junction, installation parameters).

m Lack of knowledge of the detailed behaviour of some electronic
equipments (Printed Circuit Board, chips, ...).

m Complexity of the system definition.

AIRBUS
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Sources of uncertainty in this use-case (2/3)

Sources of uncertainty: environmental variables

m Likelihood of occurence of a lightning strike in a given area.
m Variability of the lightning strike (current level, signal shape, ...).

m Zoning of the attachment zone on the aircraft. AIRBUS
- GROUP
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use-case (3/3)

Sources of unce

Sources of uncertainty: modelling
approximations

m Approximation linked to the choice of

the Navier-Stokes equation.

m Choice of the 3D numerical scheme

Sources of uncertainty: test
uncertainties

(Finite Volume, nodal methods Method, m Representativity of on-ground test
facilities.
m Coupling inside the zones and with m Reproductibility of test set-ups.
control /command systems. m Calibration of test devices.
m Non linear behaviour of the radiating
effects.

AIRBUS
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